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Abstract

Task-oriented dialogue system (TOD) is gaining attention in both academia and

industries as it provides an interactive information access to the users. For train-

ing and evaluation of the system, user simulators have been researched in the

literature. This thesis comprises of two novel work: 1) a multi-task neural user

simulator, and 2) a multi-modal TOD with state-machine like architecture. First,

the multi-task neural user simulator has achieved a state-of-the-art performance

in user satisfaction score and action prediction tasks. Also, this work has found

that three dialogue research tasks (user satisfaction score prediction, user action

prediction, and user utterance generation) can synergize each other, once jointly

trained by multi-task learning. Next, we present a state-machine like architec-

ture for a multi-modal TOD. We discuss multiple conversational tactics as well as

how the system is developed, tested, deployed and evaluated to ensure seamless

and engaging conversations with users. As both work are extensible and can be

adapted to many research, we propose three future work before concluding the

thesis.



Acknowledgements

I would like to first thank Dr. Aldo Lipani for his superb supervision. It was a huge

privilege for a taught-master student to have a desk with a monitor at UCL office.

The kindness of him has allowed me to have an excellent environment, where I

could focus on my research as well as coursework. He has not only been my su-

pervisor but also a co-worker during the Alexa Prize TaskBot Challenge. Frequent

meetings and non-stop working across different time zones with team members

have made our team progress to the quarter-final. Moreover, it was his supervi-

sion that made my research on user simulation be published and presented in

the 2022 ACM SIGIR conference.

I would like to thank Osman Ipek, and the whole Alexa Prize team for their

support during the challenge. Continuous technical help, including computing

resources and periodic feedback had helped our task bot improve day by day.

I would like to thank all the members of UCL Web Intelligence group. Pro-

fessor Emine Yilmaz and Dr. Qiang Zhang have welcomed me to the group and

helped my summer research at the group be funded by the CS department. Valu-

able talks with Jerome Ramos, Zhengxiang Shi, Hossein Rahmani, Xiao Fu, and

Ruizhe Li have let me delve into various branches of research in Conversational

Artificial Intelligence.

I thank all the professors who have provided us with outstanding lectures

and assignments. I thank professor Marianna Obrist for supervising my bache-

lor’s project. I also thank all my friends who spent countless days and nights with

me on the coursework back-to-back.

Last but not least, I thank my family for their endless love and support.



Dedication

To my parents



Contents

1 Introduction 12

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 User Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Task-oriented Dialogue Systems . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Review 16

2.1 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Frequency-based Language Models . . . . . . . . . . . . . . . 16

2.1.2 Neural Network-based Language Models . . . . . . . . . . . . 17

2.1.3 Transformer-based Language Models . . . . . . . . . . . . . . 18

2.1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.5 Multi-Task Learning in NLP . . . . . . . . . . . . . . . . . . . . 20

2.2 User Simulation in Dialogue Systems . . . . . . . . . . . . . . . . . . 21

2.2.1 Uses Cases of User Simulators . . . . . . . . . . . . . . . . . . 21

2.2.2 Architecture of the Simulator . . . . . . . . . . . . . . . . . . . 22

2.2.3 User Satisfaction Modeling . . . . . . . . . . . . . . . . . . . . 23

2.3 Task-oriented Dialogue Systems . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Modules and Approaches . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Current Challenges in TOD . . . . . . . . . . . . . . . . . . . . 26

3 Multi-Task User Simulator 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 SatAct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Contents 7

3.2.2 SatActUtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Utt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Task-oriented Dialogue System 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Initial NLP Modules . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Intent Classification and Slot Filling . . . . . . . . . . . . . . . 41

4.4.3 Task Classification . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.4 ASR Error correction . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.5 Avoiding dangerous and sensitive conversation . . . . . . . . 43

4.5 Response Generations . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 Stateful Responders . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.2 Stateless responders . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Sub-modules for Response Generators . . . . . . . . . . . . . 44

4.6 Dialogue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.1 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.2 Neural Response Selection . . . . . . . . . . . . . . . . . . . . 48

4.7 Multimodal Customer Experience . . . . . . . . . . . . . . . . . . . . 49

4.8 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Contents 8

4.11 Online Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Proposing Future Research 54

5.1 Conversation Look-ahead by User Simulation . . . . . . . . . . . . . 54

5.2 Personalized User Simulator . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Reinforcement Learning on Dialogue Manager . . . . . . . . . . . . 56

6 Conclusions 57

Bibliography 59

Appendices 72

A Regarding User Simulator 72

A.1 Selected Examples of USS Dataset . . . . . . . . . . . . . . . . . . . . 72

A.2 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B Regarding Condita 73

B.1 Condita System Requirements . . . . . . . . . . . . . . . . . . . . . . 73

B.2 TaskBot Content Violation Keyword Examples . . . . . . . . . . . . . 75

B.3 Alexa Skills Kit Console . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.4 CoBot’s transcribe CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.5 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.6 Example Conversations with Annotations . . . . . . . . . . . . . . . 78

B.7 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Figures

3.1 Multi-task learning with T5 and task-specific prefixes: “Satisfac-

tion Prediction:”, “Action Prediction:”, and “Utterance Generation:”.

These are prepended to the dialogue context. Here we show a Mul-

tiWOZ 2.1 sample and the result generated by the fine-tuned T5

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 System Architecture of Condita. Best viewed in color. 1) Not all re-

sponse generators are depicted in the Figure. 2) Extractive Q/A and

Summarizer, Evi Q/A, and Visual response generators are modules

that interact with each response generator. 3) Modules with dotted

box are experimented within the system but not deployed in the

production. 4) Noun Phrase, Coreference, Punctuation, and Sen-

timent modules were provided by the CoBot framework. 5) After

every conversation, user can rate the session on a scale of 1 to 5

with textual feedback. User ratings and feedback pipeline is con-

structed for continuous development. GitHub Workflows stream-

lines the fetching of ratings from Alexa Prize S3 bucket, followed by

a table joining with state table. The joined table is used not only for

continuous development but also for creating a response ranking

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 State machine like architecture of Condita’s DM. The user begins at

the Launch State. Steps with an asterisk (*) can only be reached if

the user is using a screen device. . . . . . . . . . . . . . . . . . . . . . 46

4.3 UI for the Task Selection (left) and Navigate Step (right) states. . . . 50



List of Figures 10

4.4 Condita depolyment process . . . . . . . . . . . . . . . . . . . . . . . 51

B.1 Intent Classification and Slot Filling done by ASK . . . . . . . . . . . 76

B.2 How Intent and Slots are defined in console, e.g., UserNameIntent . 76

B.3 CoBot’s transcribe command line interface. Unique IDs are censored. 77

B.4 Integration testing in a terminal environment. . . . . . . . . . . . . . 77



List of Tables

3.1 Statistics of the dataset with upsampling factors. . . . . . . . . . . . 32

3.2 Performance for the User Satisfaction Score Prediction. . . . . . . . 33

3.3 Performance for the User Action Prediction. . . . . . . . . . . . . . . 33

3.4 Performance for the User Utterance Generation. . . . . . . . . . . . 33

3.5 Cross-domain UAR for the User Satisfaction Score Prediction. . . . 33

4.1 Performance of BERT-FP model on Stack Exchange data and the

real user data. Mean Average Precision, Mean Reciprocal Rank, Pre-

cision at one, and Recall are denoted as MAP, MRR, P@1, and R@k,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1 Example of SGD from User Satisfaction Simulation (USS) dataset

[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.1 Conversations annotated with detected intent/slot, selected re-

sponse generator, and state changes. . . . . . . . . . . . . . . . . . . 78



Chapter 1

Introduction

Conversational Artificial Intelligence (AI) has been a long-standing area of explo-

ration in the research community and has now penetrated both academia and in-

dustries with products such as Alexa and Siri. In particular, in recent years, there

has been growing interest in the field of task-oriented dialogue system (TOD).

Unlike open domain dialogue system, which deals with open-ended knowledge

without any pre-defined tasks [2], TOD is designed with specific domains and

tasks in mind.

One of the main challenges in building TOD is gathering enough user data

to train a model that is able to generalize and reach a satisfactory performance in

terms of user satisfaction [3]. Furthermore, the interactive nature of a dialogue

system makes its evaluation challenging [4]. In order to mitigate the training and

evaluation problems, literature has been seeking answers in dialogue user sim-

ulator that can mimic users’ behavior [4, 5]. In this thesis, to contribute to this

area of research, we propose a state-of-the-art user simulator that predicts user’s

satisfaction score, action, and next utterance.

Current research in TOD can be classified into modularized approach and

end-to-end approach. In modularized approach, TOD is constructed with mul-

tiple modules, which are specialised in their own specific natural language pro-

cessing (NLP) tasks. This modules are then coupled together to provide a com-

plete dialogue experience. On the other hand, end-to-end approach attempts

to build a system with a single model, which takes user utterance and directly



1.1. Literature Review 13

outputs a system response in natural language [6]. In this thesis, we focus on im-

proving the modularized approach and develop a state-machine like framework

for multi-modal task-oriented dialogue systems.

1.1 Literature Review

Before diving into the main part of this thesis, chapter 2 surveys the advances

of language models (LM), conversational user simulation, and the studies of

task-oriented dialogue systems (TOD) in order to provide all the necessary back-

ground information that help the understanding of the two novel work presented

in chapter 3 and 4.

For LM (section 2.1), readers are particularly encouraged to focus on the re-

search in large-scale pre-trained models, such as BERT [7], GPT [8], and T5 [9],

all of which are based on the Transformer [10] language model. We look into the

architecture of these models and see how they can be applied to the dialogue sys-

tems. For user simulation (section 2.2), we see the past attempts on construct-

ing the simulators, explore the use cases of user simulation in dialogue systems

and how users’ satisfaction level can be modeled. For TOD (section 2.3), we first

scrutinize numerous modules and approaches that consist of the dialogue sys-

tem which are the paramount background knowledge for chapter 4. Next, we

reveal four main challenges in TOD research, and show how these problems are

mitigated in the following two chapters.

1.2 User Simulation

In task-oriented dialogue systems, a human-like user simulator that can predict

users’ satisfaction level and next action can help refine dialogue strategies and

evaluate conversations. Moreover, in reinforcement learning (RL) based dialogue

policy training, user simulator can act as an environment that gives rewards to a

learning agent [6]. However, user simulators have been less researched in liter-

ature compared to the other areas, and little work has explored user simulators

that are able to handle multiple tasks in a multi-task training strategy.

In chapter 3, we convince the importance of user simulators in TOD, and
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propose a novel multi-task based neural user simulator that predicts users’ satis-

faction score and next action while also jointly generating users’ next utterance.

In particular, we show that:

1. our deep text-to-text multi-task neural model achieves state-of-the-art

(SOTA) performance in user satisfaction and action prediction,

2. adding utterance generation as an auxiliary task can boost the prediction

performance of satisfaction and action prediction via positive transfers

across the tasks, and

3. via ablation studies, all three tasks (satisfaction prediction, action predic-

tion, and utterance generation) synergize each other.

This work has been accepted to the 45th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval (SIGIR ’22) 1

as a short paper. Source code is made available at https://github.com/

kimdanny/user-simulation-t5 .

1.3 Task-oriented Dialogue Systems

Alexa Prize is an international competition for university students committed to

the development of the field of conversational AI. Started from 2017, the Alexa

Prize team has launched a series of SocialBot Grand Challenge, where the goal of

the challenge was to design and build an open-domain dialogue system that is to

be deployed on the Alexa platform. In 2021, the Alexa Prize team launched a new

year-long competition, a TaskBot Challenge, where the focus of the challenge was

in building a multi-modal task-oriented dialogue system specialized in cooking

and do-it-yourself (DIY) knowledge [11]. UCL Condita team was selected in the

2021 TaskBot Challenge, and the author of this thesis is one of the 7 members of

the team [12].

In chapter 4, we present a COoking-aNd-DIy-TAsk-based task-oriented dia-

logue system (Condita) built for the 2021 Alexa Prize TaskBot Challenge. Condita

1 https://sigir.org/sigir2022/

https://github.com/kimdanny/user-simulation-t5
https://github.com/kimdanny/user-simulation-t5
https://sigir.org/sigir2022/
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provides an engaging multi-modal agent that assists users in cooking and DIY

tasks. Our main goal was to generate engaging dialogue and provide an effort-

less user experience in order to create a memorable and enjoyable experience

for users. We discuss Condita’s system architecture and analyze the various con-

versational strategies that allowed us to achieve excellent performance through-

out the competition. This includes how we tackle the dynamics of multi-turn

dialogue and integrate domain knowledge, as well as how online evaluation of

the system can be incorporated into the continuous development cycle. We also

explain how this large interactive software system could be deployed to the pro-

duction ensuring the low latency.

This joint work with 5 PhD students and Dr. Aldo Lipani 2 at UCL Web In-

telligence group 3 will be published in the Alexa Prize Proceedings 4 after the

competition. Note that this thesis only includes the contributions by the author

of the thesis, To Eun Kim, unless explicitly indicated in the text.

2 supervisor of both Alexa Prize TaskBot Challenge and this thesis
3 http://wi.cs.ucl.ac.uk
4 https://www.amazon.science/alexa-prize/proceedings

http://wi.cs.ucl.ac.uk
https://www.amazon.science/alexa-prize/proceedings


Chapter 2

Literature Review

2.1 Language Modeling

This section investigates the advances of Language Models (LM) through the lens

of research in task-oriented dialogue systems (TOD).

2.1.1 Frequency-based Language Models

Language Model (LM) is the foundation of various Natural Language Processing

(NLP) tasks. In statistical language modeling, LM represents the text information

into a computable format by allocating probabilities to the sequence of words

or characters. In other words, to represent a sequence S of m number of words

(w1 · · ·wm), the LM assigns probability P (S) to the sequence S as follows [13]:

P (S) = P (w1w2 · · ·wm)

= P (w1)P (w2 | w1) · · ·P (wm | w1w2 · · ·wm−1)

=Πm
i=1P (wi | w1, w2, · · · , wi−1)

Here, calculating the probability of the sequence can be based on the fre-

quency ( f r eq) of the words in the corpus, i.e.,

P (wi | w1, w2, · · · , wi−1) = f r eq(wi )

f r eq(w1 · · ·wm)

This method creates extensive amounts of parameters. Also, as the sequence

of words gets longer, the probability that wi exists after w1 · · ·wm becomes lower.

In a real world situation, where the size of the corpus is huge, this can let most of
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the P (S) value close to 0, which makes the representation sparse. Therefore, an

approximate method, N-gram model, was introduced [13].

N-gram model considers n number of continuous words as one token.

When assigning the probability of wi , the model only takes previous n number of

words into consideration, i.e., P (wi | wi−n , · · · , wi−1). Variation of the model de-

pends on the parameter n; uni-gram (n = 1), bi-gram (n = 2), and tri-gram (n = 3)

models can be devised. Note that the N-gram model does not entirely solves the

sparsity problem, although it can alleviate it [13].

Another frequency-based model that generally performs better than N-gram

is the Term Frequency–Inverse Document Frequency (TF-IDF) model [14]. TF-

IDF is a combination of term frequency (TF) and inverse document frequency

(IDF). First, TF, as the name suggests, compute the frequency of the term with

respect to a given document. This is calculated by dividing the number of occur-

rences of the word by the length of the document. Second, IDF is for assigning

weights to the words [14]. It is calculated by log
(

D
d ft

)
, where D is the set of each

document d , and d ft is the aggregation of documents that includes the term t .

Finally, the TF-IDF is the product of TF and IDF as below:

T F − I DF (t ,d ,D) = T F (t ,d)× log

(
D

d ft

)
(2.1)

Although it assigns weights to each word unlike N-gram models, since it is

based on the Bag-of-Word approach, TF-IDF cannot capture the order of the

words, i.e., lack of semantic information representation [15], and this problem

was dealt in the later models, such as GloVe[16] and ELMo[17].

2.1.2 Neural Network-based Language Models

In order to solve the problems of frequency-based LMs, neural network-based

language models have been introduced. The following models can learn linguis-

tic features and continuous representations [13].

Feed-forward Neural Network (FFNN) was the first artificial neural network
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developed in the research. It is called feed-forward as the model lets the infor-

mation in the network flow only in one direction from the input nodes to output

nodes. Using perceptron as a fundamental building block of the network, vari-

ations of FFNN have been introduced, including kernal perceptron and multi-

layer perceptron [18].

Recurrent Neural Network (RNN) is an adaptation of FFNN for sequential

data like natural language, thus can introduce a concept of discrete time dynam-

ics [19]. At time step t , with an input xt , hidden state ht , and an output yt , the

RNN can be constructed as:

ht = fh (xt ,ht−1) =φh
(
W⊤ht−1 +U⊤xt

)
(2.2)

yt = fo (ht ,xt ) =φo
(
V⊤ht

)
, (2.3)

where fh , fo , W, U, V are state transition function, output function, transition

matrix, input matrix and output matrix, respectively, and φh and φo are non-

linear functions, such as sigmoid or hyperbolic tangent function [19].

Due to its recurrent nature, in long data sequences, when the gradients are

propagated through time, gradients can become extremely small to the point

where parameter updates become insignificant, i.e., the vanishing gradient is-

sue [15]. To address this problem, two alternative networks, Long Short-Term

Memory (LSTM) [20] and Gated Recurrent Unit (GRU) [21] have been presented.

2.1.3 Transformer-based Language Models

In 2017, Vaswani et al. [10] have presented, the Transformer, a sequence-to-

sequence (encoder-decoder) model, based on a stack of multi-head-attention

and point-wise FFNN modules. This structure, completely freed from the re-

current architecture, has renewed a number of previous state-of-the-art (SOTA)

benchmarks in NLP tasks. Most importantly, this has spurred the recent ad-

vances of NLP, resulting in many remarkable variations in the field [22].

After the introduction of the Transformer architecture [10], many encoder-
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based language models, such as BERT [7] were used in various tasks in NLP. These

models are usually pre-trained with large corpora in a self-supervised way before

being fine-tuned to specific downstream tasks. As these encoder-only architec-

tures are more suitable for discriminative tasks, decoder-based models, such as

GPT-2 [8] are used for generative tasks. On the other hand, Raffel et al. [9] exper-

imented with an encoder-decoder model, named T5, where the target function

is mapped into text. For example, for a regression task, the model is trained to

generate a text like “v” where v ∈ R, from a input sequence prepended with a

task-specific prefix. In other words, it converts every task into a text generation

task, i.e., a regression task becomes a generation of a text-formatted target. This

characteristic of T5 makes its use easy in a multi-task setting without the need to

define task-specific heads.

The T5 model has been used in dialogue response generation tasks [23, 24,

25]. Kale and Rastogi [23] transformed every encoded system action into natural

language, then concatenated them into a sequence to pass it into the T5 model.

The T5 model is then fine-tuned to fuse the input sentences into one. Lin et al.

[24] fine-tuned T5 in an end-to-end fashion for a dialogue response generation

task, which resulted in SOTA performance with fewer human annotations. Ben-

David et al. [25] used the T5 model in a multi-task setting for users’ intent predic-

tion, training with the utterance reordering and generation tasks. They showed

that these auxiliary tasks improved the performance of the users’ intent predic-

tion task. Also, they have proven the importance of generating users’ utterances

in predicting users’ intents.

2.1.4 Evaluation Metrics

In text classification task, accuracy, precision, recall, and F1-score are the most

widely used evaluation metrics. These metrics are based on the confusion ma-

trix, which represents the values of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN). From the confusion matrix, the four met-

rics are defined as below [15]:
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Accur ac y = T P +T N

T P +F P +F N +T N
(2.4)

Pr eci si on = T P

T P +F P
(2.5)

Recal l = T P

T P +F N
(2.6)

F 1− scor e = 2∗ Recal l ∗Pr eci si on

Recal l +Pr eci si on
(2.7)

In text generation task, automatic evaluation is widely used along with hu-

man evaluation [26]. For word-based evaluation, Perplexity (PPL) [27], Bilingual

Evaluation Understudy (BLEU) [28], and Recall-Oriented Understudy for Gisting

Evaluation (ROUGE) [29] are popular [26]. PPL is defined as

2− 1
N

∑N
t=1 log2 LM(wt |w1···wt−1), (2.8)

where N is the size of the corpus. The lower the PPL, the better the perfor-

mance. BLEU and ROUGE are based on the N-gram. They both calculate the

overlaps of N-gram between the generated text and the reference. However,

BLEU is a precision-based metric, while ROUGE is a recall-based metric [26]. For

embedding-based evaluation, Average Embedding metric can be used. For both

hypothesis (generated sentence) and reference, a sentence-level embedding can

be computed by taking an average of each word embeddings in the sentence - eh

(sentence embedding of hypothesis) and er (sentence embedding of reference).

Then, one can compute the cosine similarity between the two embeddings, i.e.,

cos(eh ,er ) [26].

2.1.5 Multi-Task Learning in NLP

The idea of Multi-Task Learning (MTL) stems from the human ability, where we

can learn multiple related tasks together. Given n related learning tasks {Ti }n
i=1

MTL learns n tasks simultaneously under the assumption that MTL training set-

ting can increase the model performance of each task Ti , compared to training

n different models separately [30]. Researchers have found that MTL models’
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knowledge sharing ability can allow them to outperform their single-task coun-

terparts with less chance of overfitting in each task, and this is also found in many

NLP research [9, 31, 32, 33, 34, 35, 36].

In supervised MTL, multiple tasks can consist of different types of super-

vised learning, such as regression and classification. Heterogeneous MTL is

deemed to have different types of tasks, while homogeneous MTL consists of

tasks of single type [30]. In this regard, the T5 model mentioned in the section

2.1.3 can effectively perform both homogeneous and heterogeneous MTL due to

its text-to-text characteristic. In other words, as long as the task-specific prefixes

present, multi-task learning is equivalent to simply mixing the datasets together

[9].

MTL is also widely used in model pre-training, so called a multi-task pre-

training. This approach has been advocated in both T5 [9] and MT-DNN [31]

models. There have been attempts to use the multi-task pre-training strategy for

dialogue systems. Xu et al. [35] have shown that a BERT-based self-supervised

MTL approach can significantly improve the performance on the multi-turn re-

sponse selection task. This improvement was achieved by adding four auxiliary

tasks. All four auxiliary tasks were proven to be useful as removing any of them

decreased the performance of the model on the main task. Zhang et al. [36] devel-

oped DialogBERT. They pre-trained BERT with five self-supervised tasks, which

were found to be helpful in several other dialogue systems-related tasks.

2.2 User Simulation in Dialogue Systems

2.2.1 Uses Cases of User Simulators

Dialogue user simulator has a number of use cases in dialogue systems research.

First, to alleviate the data scarcity issue, simulators can be used to generate a vast

amount of synthetic dialogues. Acharya et al. [37] used user simulator to gener-

ate training data by feeding the simulator with a few seed dialogues. A simulator

can also be used when training a dialogue system, particularly dialogue manager

(DM) [38], and this is usually done by reinforcement learning (RL) algorithms
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[3, 39], such as policy optimization [39] and Dyna-Q [40, 41]. In the RL-based

training, a simulator acts as an environment that affects the agent’s (DM) be-

havior by the corresponding rewards. Another use case of the user simulator is

the evaluation of the dialogue system [3, 42]. Lipani et al. [5] showed that a user

simulator can interact with the dialogue systems while tracking the generated

dialogues with its predicted satisfaction scores.

2.2.2 Architecture of the Simulator

One of the early attempts to simulate users’ behaviour was an Agenda-Based User

Simulation (ABUS). The agenda represents the users’ state as a stack of user ac-

tions. This probabilistic approach lets simulator randomly set a user’s goal and

keeps it unchanged during the whole dialogue. During the conversation, the sim-

ulator generates simulated user utterances. Then, the agent’s (dialogue system’s)

task is to let users achieve their goals by gradually figuring the users’ needs out

[43].

Asri et al. [44] employed sequence-to-sequence [45] neural network to gen-

erate a sequence of dialogue acts (intents and slots). Similar work by Crook

and Marin [46] has used the sequence-to-sequence network for training a user

simulator that generates users’ utterance. They have followed the common ap-

proach of data preparation, where user and system dialogues are concatenated

alternately. Unlike the previous work, the simulator was trained in a natural-

language-to-natural-language fashion. The simulator was designed to use GRU

[21] as encoder and LSTM [20] as decoder. When assessed by both automatic

and human evaluation, they have shown that the sequence-to-sequence-based

model works better than the traditional approaches in simulating users. This

finding is aligned with the later research that data-driven deep neural networks

have superior performance to the traditional approaches in user simulations

[39].
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2.2.3 User Satisfaction Modeling

Modeling users’ satisfaction is an important part of designing a user simulator.

If a simulator can track the turn-level satisfaction score of users, the automatic

evaluation of the system’s response based on the user satisfaction score becomes

possible [3, 47]. Sun et al. [1] developed a model to predict users’ satisfaction

scores and actions by cascading one model specialized in the prediction of users’

satisfaction scores to another model specialized in the prediction of users’ ac-

tions. The latter uses the output of the former as an input. The results show that

the Hierarchical Gated Recurrent Units (HiGRU) [48] and BERT [7] based models

perform well in these two tasks. BERT especially performed well on action pre-

diction, and its cross-domain performance on user satisfaction was notable com-

pared to that of the other models in the experiment. This analysis was performed

using the conversational dataset named User Satisfaction Simulation (USS). This

dataset contains turn-level annotations of users’ satisfaction scores (on a 5-point

scale) and actions [1], and it is built as an extension of 5 conversational datasets

(MultiWOZ 2.1 [49], SGD [50], CCPE [51], JDDC [52], and ReDial [53]).

Another approach to model user satisfaction is to train a dialogue system

with users’ feedback in an online setting [54]. While conversing with users, the

system attempts to predict their users’ satisfaction scores after every user utter-

ance. However, the satisfaction score prediction is performed after each user ut-

terance, so-called, an after-utterance (AU) prediction. This is in contrast with

the before-utterance (BU) prediction. The AU prediction of user satisfaction can

sometimes be easier than the BU prediction, since there may be patterns in user

utterances that indicate a clear dissatisfaction, e.g., “What are you talking about?”

[54]. However, the BU prediction, although more difficult, can be used by the sys-

tem to prevent the user from having a bad experience beforehand by changing

the course of the dialogue towards a less unsatisfactory one.
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2.3 Task-oriented Dialogue Systems

Approaches in building a task-oriented dialogue system (TOD) can be divided

into two categories: modularized approach and end-to-end approach. A mod-

ularized system comprises of the following modules: natural language under-

standing (NLU), dialogue state tracking (DST), dialogue policy learning/genera-

tion, and natural language generation (NLG). DST and dialogue policy module

are often grouped as a dialogue management (DM) module. On the other hand,

end-to-end system employs a single model that takes dialogue history as input

and outputs a natural language system response. Since there exists several major

challenges left unsolved in designing a well-performing end-to-end dialogue sys-

tem, current literature and industries are more focused on improving the modu-

larized approach [6].

2.3.1 Modules and Approaches

Natural Language Understanding (NLU) is the first task that a dialogue sys-

tem should process once users’ utterance is input to the system. The aim of NLU

is twofold: classification of user’s intent and detection of zero or more slots in

the sentence. The former is a classification task (intent classification), while the

latter is a sequence labeling task (slot filling) [6]. In the literature, joint-training

of intent classification and slot filling has shown promising results. Liu and Lane

[55] have jointly trained a sequence-to-sequence model with both tasks. By us-

ing an attention-based bi-directional LSTM as encoder, the context could be well

represented. Then, two task specific RNN decoders, each of which is for intent

classification, and slot filling, were concatenated. This model structure allowed

an end-to-end joint training of both tasks, giving high F1-score and low intent

error rate. Using similar training methodology, but replacing RNNs with BERT,

Chen et al. [56] have also shown the excellence of joint training of intent classi-

fication and slot filling. In the analysis of impact of intent and slot in NLU, slot

filling turned out to be more important in increasing the performance of NLU,

compared to intent classification. Therefore, the system may as well put higher

weights on slot filling than intent classification [57].
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Dialogue State Tracking (DST) is the next task that the dialogue system

should process after the NLU. It is the core component of the system that main-

tains and tracks users’ states through the history of the dialogue. DST module

is given with dialogue history, users’ intents, and slots (output from NLU) and

decides the state of the current turn [58]. The state at time t can be regarded as

the representation of the dialogue history until t , i.e., Markov Property [6, 59].

Mrkšić et al. [60] have incorporated belief states into the state representation,

which comprises of slot values. However, this methods performs poorly when

faced with unseen values. To solve this issue, Chao and Lane [61] have presented,

a BERT-DST, focusing on a situation, where the ontology is veiled to the state

tracker. This work has surpassed most of the prior work on DST the benchmarks.

Dialogue Policy Learning is for deciding which action to take given the cur-

rent dialogue previously state set by DST. Yang et al. [62] has introduced a joint

learning of NLU and Dialogue Manager (DM). Their bi-direction LSTM network

removed the DST module, storing the dialogue states within the LSTM state cells

as latent variables. For policy learning, they named the task as system action

prediction (SAP), and showed that the joint learning of NLU in SAP increased

the performance of user intent classification. As mentioned in the last section,

conversational states have Markov property. Therefore, it is possible to form

a Markov Decision Process (MDP) [59] for training a DM. Other reinforcement

learning (RL) based methods were also extensively explored, including model-

free RL (DQN and Policy Gradient) [6]. However, since RL requires great num-

ber of conversations, user simulation is used to provide its training environment.

Deep Dyna-Q is an example which used user simulation in RL-based DM training

[41].

Natural Language Generation (NLG), often called as response generation

in TOD, is the final step that converts dialogue acts represented in a semantic

form into a natural language. There are two ways to map the acts into the natural

language: template-based and language model (LM)-based approach [63]. Since

template-based approach falls short in fluency, statistical LM-based approach
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is preferred. To convey the semantics in the dialogue acts, a semantically condi-

tioned LSTM (SC-LSTM) [64] was proposed. After the emergence of the large pre-

trained LMs, SC-GPT model [63] has demonstrated a significant improvements

in NLG, measured by both automatic evaluation metrics and human evaluations.

Response Selection. If there exists multiple candidates of generated re-

sponse, then ranking of the responses is needed by matching the dialogue con-

text with responses. BERT-FP [65], which uses a fine-grained post-training

method to response selection serves as a SOTA model in this field.

2.3.2 Current Challenges in TOD

There are specific issues that arise in task-oriented systems. First issue originates

from the importance of tracking multi-turn dialogues [6]. Unlike open domain

dialogue system, where the system does not have to strictly track users’ goal, in

TOD, a role of the DST and policy learning is critical to the system performance.

In chapter 3, we show how pre-trained language model can learn the representa-

tion of the multi-turn dialogue history. In chapter 4, we show how this problem

can be handled by policies on a state machine like architecture in conjunction

with a key-value pair database.

Second, integrating domain knowledge into a system is hard [6]. Most of

the modularized system has its own knowledge base (KB) for querying and re-

trieving domain-specific information. However, as demand for multi-domain

TOD grows, ontology integration tasks are becoming harder [49, 50]. We show

how KB can be integrated into the TOD system in chapter 4.

Next is data efficiency [6]. Recent models in dialogue systems are depen-

dent on data-driven neural architecture. However, obtaining a large dialogue

dataset is very difficult and costly (needs human annotations), and this is more so

in TOD. Therefore, low-resource training is getting a limelight. We show how data

efficiency issue can be handled by multi-task transfer learning with pre-trained

language models in chapter 3.

Last but not least, evaluation of a conversational system is challenging [6].

In offline evaluation, where conversation is evaluated by test collections, in ac-
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cordance with the Cranfield paradigm, the system can only be evaluated with

predefined response candidates. Moreover, it can either judge a single turn or a

single path of the conversation, without any reflection of multi-turn history or

the other branches of the responses that could have been made by the system

during the dialogue [4]. In online evaluation, the dialogue system has to be de-

ployed and accessible to real users. However, this is highly costly and difficult

for individual researchers to do so. Chapter 3 and 4 demonstrate how offline and

online evaluation can be performed.



Chapter 3

Multi-Task User Simulator

3.1 Introduction

Two recent papers have influenced our work. The first work includes user satis-

faction analysis, and the second work includes user utterance generation. In the

former, Sun et al. [1] investigated how users’ satisfaction influences users’ actions

during the dialogue with an agent. They noticed that the system’s unprofessional

responses or failure to catch users’ requirements can result in users’ dissatisfac-

tion. In the latter, Ben-David et al. [25] recommended the use of the T5 model

[9] and used auxiliary tasks like utterance reordering and utterance generation,

as an approach to improve the performance of the users’ intents prediction task

which are proven to be effective. Following this study, we hypothesize that the

users’ utterance generation task can give a positive transfer to the users’ satisfac-

tion scores and actions prediction tasks when trained together.

In this chapter, we make the following contributions:

• We develop a neural architecture and train it to predict both satisfaction

scores and actions at the same time in a multi-task learning (MTL) setting.

We abbreviate this model as SatAct. By doing this, we see an increase in

performance for both prediction tasks through positive transfers across the

tasks.

• We develop a neural architecture and train it to predict satisfaction scores
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and actions, and generate users’ utterances at the same time in an MTL

setting. We abbreviate this model as SatActUtt.

• We perform an ablation study to further validate our hypothesis.

We use the User Satisfaction Simulation (USS) [1] as our main dataset, be-

cause the turn-level satisfaction annotations are made before the users’ last ut-

terance, i.e., before-utterance (BU) prediction. We take the HiGRU [48] and BERT

[7] as our baseline models for the user satisfaction and action prediction tasks,

since the two models performed the best in the USS benchmark as mentioned

in section 2.2.3. Among the 5 different sources of datasets in USS, we do not

use ReDial and JDDC. We do not use the former because it does not contain the

annotation of users’ actions. We do not use the latter because this source is in

Chinese, whereas this paper we focuses on English. There are a few more differ-

ences we make in the preparation of the USS dataset, which will be discussed in

Section 3.3.1.

3.2 Multi-Task Learning

In this work, we fine-tune the T5 model [9] in an MTL setting on the USS dataset

to make a user simulator that predicts users’ satisfaction scores and actions, and

generates users’ utterances. We hypothesize that the use of the pre-trained T5

model fine-tuned in an MTL setting will allow the transfer of prior and task-

specific knowledge across the tasks. Moreover, the simplistic nature of the T5

model allows the training of a regression task for satisfaction scores, classifica-

tion task for actions, and generation task for users’ utterances simultaneously in

a fully text-to-text manner without any task-specific layers.

We design three models based on T5 as illustrated in Figure 3.1: the SatAct,

SatActUtt and Utt models. These models differ based on the considered learning

tasks. In what follows we will indicate the dialogue history with H , the satisfac-

tion score with s, the action with a and the user-utterance with u.
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Figure 3.1: Multi-task learning with T5 and task-specific prefixes: “Satisfaction Pre-
diction:”, “Action Prediction:”, and “Utterance Generation:”. These are
prepended to the dialogue context. Here we show a MultiWOZ 2.1 sample
and the result generated by the fine-tuned T5 model.

3.2.1 SatAct

The goal of SatAct is to learn the function M(s, a|H ), where an MTL based gener-

ative model M generates satisfaction scores and actions given a dialogue context

H . This model is used to compare the performance of an MTL based T5 model

against the models developed by Sun et al. [1].
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3.2.2 SatActUtt

The goal of SatActUtt is to learn the function M(s, a,u|H ), where an MTL based

generative model M generates users’ utterances along with satisfaction scores

and actions given the dialogue context H . Should this model be successful it

would validate our hypothesis: adding utterance generation as an additional task

to the SatAct model may provide a positive transfer across the tasks.

3.2.3 Utt

The goal of Utt is to learn the function M(u|H ), where a generative model M

generates only a user utterance given the dialogue context H . The purpose of

this model is to investigate the impact of satisfaction score and action prediction

tasks on the utterance generation task. If the performance of SatActUtt is better

than Utt then the transfer across the tasks is deemed positive.

3.3 Experiments

3.3.1 Dataset Preparation

We are following the general preparation strategy of Sun et al. [1] with the ex-

ception of the use of different upsampling factors and the introduction of a new

augmentation strategy. The former is used to mitigate a dataset imbalance and

the latter to improve learning.

First, we transform the USS dataset into:

D = {(H i , si , ai ,ui )}N
i=1 (3.1)

where i is the index of a sample, H i is the dialogue history, si ∈ {1, . . . ,5} is the

user’s satisfaction score, ai is the user’s action, and ui is user’s utterance. When

training, we provide the models a dialogue history with up to 10 previous turns

({i-9, . . . , i}) and let the models learn to predict the next turn (i +1). 10 turns are

suitable considering the maximum token length of the T5-base model.

Second, we mitigate a dataset imbalance. As shown in Table 3.1, there is

a large discrepancy between the ratios of non-3-rated and 3-rated satisfaction
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Table 3.1: Statistics of the dataset with upsampling factors.

MultiWOZ 2.1 SGD CCPE

#utterances 12553 13833 6860
#(non-3) / #(3) 0.13 0.20 0.29
upsampling factor 7.5 5.0 3.5

scores. To overcome this issue, Sun et al. [1] over-sampled the cases of non-3-

ratings by a factor of 10. This factor was constant across the datasets. In our case,

we calculate a specific upsampling factor for each dataset. In this way, we prevent

a model from seeing too many non-3-ratings, which can harm the performance

of the user simulator.

Third, while upsampling, rather than simply copying the same utterances,

we randomly select one augmentation strategy among random deletion, ran-

dom swap, random insertion, WordNet-based synonym replacement, and back-

translation (to and from a random language). We perform this augmentation

because it has been proven to be effective in several NLP tasks [66].

3.3.2 Training Details

We split the dataset into train, validation and test sets with a ratio of 8:1:1. When

splitting the dataset, we ensured that each satisfaction scores were evenly spread

across the splits. When training the model, we used T5-base (220M parameters,

vocabulary size: 32128) [9], and train up to 7 epochs with the following hyperpa-

rameters: batch size = 4, Optimizer = AdamW, learning rate = 1e-3. max_length

is set to 10 when training a SatAct, while set to 100 when training SatActUtt. The

loss function is defined as the negative log-likelihood.

Throughout the training phase, we evaluated an updated model with the

validation set and saved the best model based on the validation loss. We used

early stopping and linear learning rate scheduling. During the token generation

phase, we set the beam_size to 5, the top_p to 0.95, and the repetition_penalty to

2.0. The training took around 6 hours for each model with an NVIDIA Tesla V100

GPU.
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Table 3.2: Performance for the User Satisfaction Score Prediction.

MultiWOZ 2.1 SGD CCPE
UAR Kappa Rho F1 UAR Kappa Rho F1 UAR Kappa Rho F1

HiGRU (Sun et. al.) 0.225 0.143 0.886 0.238 0.293 0.118 0.451 0.086 0.237 0.167 0.881 0.274
BERT (Sun et. al.) 0.256 0.133 0.823 0.224 0.261 0.094 0.477 0.048 0.232 0.147 0.891 0.245
SatAct 0.535 0.824 0.873 0.901 0.449 0.619 0.681 0.713 0.222 0.094 0.347 0.165
SatActUtt 0.572 0.767 0.815 0.838 0.608 0.763 0.822 0.847 0.437 0.612 0.690 0.734

Table 3.3: Performance for the User Action Prediction.

MultiWOZ 2.1 SGD CCPE
Acc Prec Recall F1 Acc Prec Recall F1 Acc Prec Recall F1

HiGRU (Sun et.al.) 0.518 0.216 0.162 0.167 0.643 0.534 0.505 0.507 0.672 0.503 0.472 0.482
BERT (Sun et.al.) 0.519 0.255 0.183 0.191 0.661 0.570 0.572 0.560 0.674 0.696 0.495 0.496
SatAct 0.616 0.295 0.309 0.299 0.630 0.433 0.471 0.447 0.544 0.267 0.235 0.207
SatActUtt 0.621 0.439 0.407 0.402 0.678 0.538 0.574 0.550 0.623 0.458 0.429 0.430

Table 3.4: Performance for the User Utterance Generation.

BLEU-1 BLEU-4 ROUGE-1-F ROUGE-2-F ROUGE-L-F STS

MultiWOZ 2.1
SatActUtt 0.206 0.019 0.193 0.065 0.182 0.327
Utt 0.210 0.018 0.192 0.063 0.180 0.318

SGD
SatActUtt 0.281 0.050 0.269 0.125 0.263 0.403
Utt 0.267 0.048 0.251 0.117 0.247 0.394

CCPE
SatActUtt 0.195 0.019 0.240 0.072 0.230 0.410
Utt 0.170 0.012 0.222 0.064 0.208 0.394

Table 3.5: Cross-domain UAR for the User Satisfaction Score Prediction.

Trained Generate MultiWOZ 2.1 SGD CCPE

MultiWOZ 2.1
BERT − 0.233 0.226

SatActUtt − 0.247 0.275

SGD
BERT 0.249 − 0.223

SatActUtt 0.280 − 0.233

CCPE
BERT 0.213 0.216 −

SatActUtt 0.266 0.264 −

3.3.3 Evaluation Measures

For the evaluation of the models on the satisfaction score and action predic-

tion tasks, we follow the previous work [1]. For the satisfaction score prediction,

we use: Unweighted Average Recall (UAR), Cohen’s Kappa, Spearman’s Rho, and

binary-F1-score (positive when satisfaction score > 2). For the action prediction,

we use: Accuracy, Precision, Recall, and F1-score. We do not use the accuracy

measure for the satisfaction score prediction task due to the imbalance of the

labels. For the utterance generation task, we use BLEU [28] and ROUGE [29]
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scores. For BLEU, we use the cumulative 1-gram (BLEU-1) and 4-gram (BLEU-

4). For ROUGE, we use the ROUGE-1-F, ROUGE-2-F, and ROUGE-L-F. Also, we

use the Semantic Textual Similarity (STS) score to evaluate the contextual simi-

larity between the ground truth sentence and the generated user utterance. This

aligns with the concept of average embedding approach, introduced in section

2.1.4. STS is defined as the cosine similarity between the sentence level em-

bedding vector e1 from the ground truth utterance and embedding vector e2

from the model-generated utterance. The average of this similarity across the

whole dataset is used for evaluating the performance of models trained on the

user utterance generation task. The embeddings are taken from the pre-trained

SRoBERTa-STSb-large model [67].

3.4 Results

In Table 3.2, we show the performance of the models in predicting user satisfac-

tion scores. In Table 3.3, we show the performance of the models in predicting

user actions. In Table 3.4, we show the performance of the models in generating

the user’s utterances. Finally, in Table 3.5 we show the generalization ability of

the models on satisfaction score prediction by testing them on different datasets.

First, as it is shown in Tables 3.2 and 3.3, MTL models achieve state-of-the-

art performance in most of the metrics in both satisfaction score and action pre-

dictions by a large margin. Second, SatActUtt model is better than SatAct model

in most cases. This means that utterance generation task has given a positive

transfer to satisfaction and action prediction tasks. Third, in Table 3.4, SatActUtt

model always beats the Utt model with the exception of one case. This means

that the training on the satisfaction score and action prediction tasks also gives a

positive effect on the training on the user utterance generation task. These results

show that all three tasks can help each other to better simulate users. Moreover,

in Table 3.5, the T5 model always shows better generalization ability than BERT

in a cross-domain user satisfaction prediction task. This is most likely due to the

larger number of parameters of the T5 model and the use of a bigger corpus used
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to pre-train it. Another noticeable result is that the T5 model does not work very

well in CCPE. We believe that it is due to the small number of training samples

in the dataset that hindered the model from being well fine-tuned on the CCPE

domain.

3.5 Discussions

As can be seen in Table 3.4, the BLEU, ROUGE, and STS metrics are used to eval-

uate the performance of the models on the user utterance generation task. Al-

though the STS focuses more on the semantic structure of the sentence rather

than on their syntactic structure unlike BLEU and ROUGE, simply averaging the

scores of the STS seems not complex enough to reflect the erratic nature of user-

side utterances. Given the diverse nature of dialogue, utterance generation task

might have been better to be additionally evaluated by human evaluators. This

aligns with a study conducted by Liu et al. [68] that showed the scores from the

automatic evaluation metrics commonly used in natural language generation

tasks tend to have little correlation with the human evaluation of the generated

dialogue response. However, the finding that the joint learning with satisfaction

and action prediction improves utterance generation remains intact.

One critical limitation of the proposed simulator is that it lacks the ability of

modeling users’ knowledge and mental status. For instance, for the ground-truth

utterance: “Yes, book the tickets, also I want places to go in town.”, our simulator

generates: “Yes, please book it for me.” However, the second part of the ground-

truth sentence (“also I want places to go in town.”) is very challenging to predict

as it is a new topic that the user brought up. This is where a personal knowl-

edge graph [4] or a memory augmented neural model [69] can come into play to

incorporate the users’ mental status or preferences into the simulator. Addition-

ally, this reinforces the need for the design of better evaluation metrics for user

utterance generation which are able to capture these subtleties.
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3.6 Summary

In this paper, we have shown that the T5 model achieves state-of-the-art perfor-

mance in predicting user satisfaction scores and actions in the USS dataset with

cross-domain generalization ability. This is the first work that combines the user-

utterance generation task with the user satisfaction score and action prediction

tasks. Moreover, in our analysis, we proved that satisfaction score and action

prediction, and utterance generation tasks give a positive transfer to each other

when trained in an MTL setting.



Chapter 4

Task-oriented Dialogue System

4.1 Introduction

COoking-aNd-DIy-TAsk-based task-oriented dialogue system, Condita, which

means ‘seasoned’ in italian, is a multi-modal task-based dialogue system de-

signed for the 2021 Alexa Prize TaskBot Competition to assist users with tasks re-

lated to cooking and Do-It-Yourself (DIY) tasks. Our goal in building this TaskBot

was to generate engaging dialogue and provide easy-to-understand instructions

in order to make a memorable user experience.

Condita uses a state machine like architecture in order to keep track of the

state of the conversation. This architecture lends itself particularly well to task

based dialogue systems because each step in a set of instructions can be mapped

to its corresponding state in the state machine. After mapping a user utterance

to a particular intent, the state machine transitions to the next state. After each

state transition, the system will update the user with the next set of possible ut-

terances.

Condita also takes advantage of the multi-modal experience of Alexa devices

with screens. Using the Alexa Presentation Language (APL) API, our team heavily

customized the user interface to improve aesthetics and usability. Additionally,

many Alexa users communicated with Condita using a headless device without

any screen. To account for the absence of visuals to convey extra information, we

edited response prompts in headless mode to return more detailed text. Condita
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achieved admirable scores, particularly towards the end of the competition. In

this chapter, we analyze the implementation of Condita as well as areas of im-

provement for future work.

4.2 System Requirements

As this work was for the challenge, there were several requirements mandated by

the Alexa Prize team. The requirements were mostly motivated by keeping the

anonymity of the creator of the TaskBot (for fair competition), and the mental

and physical safety of the user (see Appendix B.1 for the list of system require-

ments).

Moreover, the system is responsible for safeguarding the customer experi-

ence from inappropriate responses. They must detect user utterances that con-

tain content violation keywords (see Appendix B.2 for selected examples) to de-

cline inappropriate tasks that could cause harm to users or their property. For

example, ‘constructing a wall’ is deemed as a dangerous task that only skilled

workers can do, so the system must be able to decline the task with redirection

prompts. Additionally, the system must not give users legal, financial, and medi-

cal advice.

Requirement on the development side is the use of Alexa Skills Kit (ASK). The

system has to be published as an Alexa Skill. ‘Skill’ is an application for Alexa,

which provides a new channel for various content and services. Users of Alexa

can explore many Skills published by other developers in the Alexa Skills Store to

achieve their daily tasks, such as enjoying music and listening to the news [70].

In our case, the Skill has to be able to meet users’ cooking and DIY tasks. To make

development process easier, Amazon provides a self-service APIs, called Alexa

Skills Kit (ASK). By using the ASK, developers not only can easily get a transcribed

version of the spoken utterances, but also can they define the intents and slot

values for NLU. Then the APIs in ASK can send all the information retrieved from

the users’ utterance to the connected AWS Lambda endpoint, where the other

part of the dialogue system resides.
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The Skill must pass a certification process before it can be published live to

the real customers in the Alexa Skills store. During the certification process, the

system is scrutinized to check its satisfiability of the requirements.

4.3 System Architecture

After the series of Alexa Prize SocialBot challenge, Khatri et al. [71] have released a

CoBot, a Python framework that facilitates the development process of conversa-

tional systems. It provides a CoBot Core Python SDK, which includes commonly

used NLU modules like noun phrase extraction, coreference extraction, and sen-

timent classification. Furthermore, in an engineering perspective, 1) it provides

excellent debugging, testing and logging functionalities which can be difficult on

a cloud environment, 2) the CoBot command-line interface (CLI) makes the de-

ployment of the system on ASK and AWS simple.

As can be seen in Figure 4.1, Condita is designed on top of the CoBot frame-

work. Its architecture was devised to reflect all the system requirements men-

tioned above, and each turn consists of the following steps:

1. The user either speaks a spoken utterance, which is then transcribed by

Alexa’s Speech Recognition (ASR) service, or uses a touch input.

2. The user’s input is then sent to an AWS Lambda endpoint. Because Lambda

is a stateless function, all information of the bot’s state is held within AWS

DynamoDB.

3. The input is ingested into the natural language processing and understand-

ing pipeline (see section 4.4) to produce NLP and task related annotations.

4. The state machine will then select several possible response generators to

run based on the user’s input and the current state of the bot (see 4.6.1)

5. The chosen response generators all run in parallel and return their gen-

erated output. Because running response generators can affect the infor-

mation stored in the state model, any updates to state are first stored in

temporary copies of the state model.
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Figure 4.1: System Architecture of Condita. Best viewed in color. 1) Not all response gen-
erators are depicted in the Figure. 2) Extractive Q/A and Summarizer, Evi Q/A,
and Visual response generators are modules that interact with each response
generator. 3) Modules with dotted box are experimented within the system
but not deployed in the production. 4) Noun Phrase, Coreference, Punctu-
ation, and Sentiment modules were provided by the CoBot framework. 5)
After every conversation, user can rate the session on a scale of 1 to 5 with
textual feedback. User ratings and feedback pipeline is constructed for con-
tinuous development. GitHub Workflows streamlines the fetching of ratings
from Alexa Prize S3 bucket, followed by a table joining with state table. The
joined table is used not only for continuous development but also for creat-
ing a response ranking dataset.
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6. The neural response ranker then ranks all responses generated and selects

the best response (see section 4.6.2). The bot then updates any information

changed including the state based on the selected response and discards all

other temporary information. The state and user tables in AWS DynamoDB

are updated accordingly.

7. The response builder then post-processes the output text and sends the bot

utterance to Alexa’s Text To Speech (TTS) Service to say the bot’s response to

the user. Additionally, if the user has a screen device, the response builder

will also return a visual response built on top of the Alexa Presentation Lan-

guage (APL).

4.4 Natural Language Processing

4.4.1 Initial NLP Modules

The Neural Coreference module extracts the coreference clusters from the previ-

ous and current turn. It returns the pronouns referenced along with the noun

it points to. As the name suggests, the Nounphrase Extraction module provides

all the nounphrases detected from the current user utterance. Along with these

modules, information about punctuation and sentiment from the users’ utter-

ance are stored in the state table. Nounphrase Extraction is heavily used when

filling the slot values that were missed from the Alexa Skills Kit (See section 4.4.2).

Low sentiment level of the utterance is used for triggering a sensitive responder.

These modules are also used when correcting ASR errors.

4.4.2 Intent Classification and Slot Filling

Alexa Skills Kit (ASK) is used to define necessary intents and slots for understand-

ing users’ utterance. Custom defined intents are: TaskRequestIntent (DIYTask,

RecipeTask, Food, and Drink as slots) TimerManagementIntent, ListManage-

mentIntent, CompleteIntent, UserNameIntent, DietaryPreferencesIntent, Skip-

Intent, RecommendationsIntent. Other than these, Amazon built-in intents are

used, such as Cancel, Stop, Resume, Yes, No, Select, Next, Previous, Help, and
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Fallback intent. See Appendix B.3 to check how intent and slots are defined in

the console, and their results (quick-test) shown from ASK console.

Since ASK does not guarantee robust performance of intent classification

and slot filling, Task Classification layer (section 4.4.3) and Nounphrase Extrac-

tion module are used to complement the performance of the ASK.

4.4.3 Task Classification

Understanding the topic of users’ question is important for a seamless conversa-

tion in task oriented conversation. Therefore, we introduce an extra Task Classi-

fication layer within the NLP pipeline.

For model training, we have collected questions related to Cooking 1

and DIY 2 from https://stackexchange.com/questions. 24,954 and

50,000 task-specific questions are collected for cooking and DIY, respectively.

The corpus is vectorized based on the frequency of the tokens, then fed into the

multinomial Naive Bayes text classifier. It showed 98% test accuracy, with high

F1-scores (0.97 in cooking task, 0.99 in DIY task). After the deployment to the

EC2 instance, authors have not seen any failing cases from this model.

4.4.4 ASR Error correction

After the utterances go through the previous NLP-steps, substantial amount of

information is stored in a state table. This information can not only be utilized

during response generation but also be referred to when attempting ASR correc-

tion. ASR correction is done in a rule-based continuous-development fashion.

User Feedback pipeline (see Figure 4.1) can alert developers to look into conver-

sational logs if low ratings are given by users continuously. Once ASR error is

detected by developers from the logs, rule-based logic can be added to the ASR

Error Correction module within the NLP pipeline. The logic reads to the previ-

ously stored NLP information from the state table and makes a correction. For

example, if user is in a TASK_SELECTION State and said "I want option tree", it is

highly likely that ASR processor made error in catching a word "three".

1 https://cooking.stackexchange.com/questions/
2 https://diy.stackexchange.com/questions/

https://stackexchange.com/questions
https://cooking.stackexchange.com/questions/
https://diy.stackexchange.com/questions/
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4.4.5 Avoiding dangerous and sensitive conversation

In accordance with the Alexa Prize guidelines, any conversation that is consid-

ered dangerous must be stopped immediately. Dangerous tasks are collected

through Amazon Mechanical Turk 3 crowd-sourcing. Paid workers were given

both dangerous and safe tasks and told to decide if they would allow their kids to

do the task or not. This allowed us to have a dataset with binary labels (safe and

unsafe). Additionally, if the user asks a sensitive question, the bot must say that

they cannot answer this question and offer to continue working on the current

task. Examples of sensitive topics include legal, financial, and medical domains.

To classify an utterance as dangerous or sensitive, we use regular expressions to

check for banned words from a list of violation keywords provided by the Alexa

Prize team. If the conversation is deemed safe and non-sensitive, the utterance

is then passed along to the dialogue management module.

4.5 Response Generations

4.5.1 Stateful Responders

Stateful responders change the information stored in the state table. Refer to

section 4.6.1 for a description of each stateful responder.

4.5.2 Stateless responders

Additionally, there are stateless responders that do not make any state changes

when called. If the system selects one of these responders, the system remains in

its current state for the next turn in the conversation.

• Help Responder: Sometimes, users are unsure what the system is expect-

ing as input. In order to alleviate this confusion, the help responder returns

example utterances that the user can say. At any point in the conversation,

users can say, "help" to hear available commands.

• Evi Open domain QA Responder: While working on a task, users may have

related questions. For example, a user might ask "How many teaspoons are

3 https://www.mturk.com/worker

https://www.mturk.com/worker
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in a tablespoon?" To answer these questions, we implemented the Evi QA

API into Condita to answer these questions. Additionally, if Evi is unable to

return an answer, it will return a fallback prompt saying that it is unable to

respond to the user’s utterance.

• Dietary Preferences: Users can set their dietary preferences as described

in 4.5.3.2.

• Sensitive Responder: The sensitive responder is run for every utterance to

check if an utterance is classified as sensitive. If the utterance is sensitive,

the bot will inform the user that it cannot talk about that particular subject

and asks the user if they would like to continue with the current task.

• List Responder: Users can create shopping lists on their Alexa app or ad-

d/remove items from existing shopping lists.

• Timer Responder: Timers can be useful when cooking or working on a DIY

task. Users can ask Alexa to set up timers while they are completing a task.

4.5.3 Sub-modules for Response Generators

4.5.3.1 Extractive QA and Summarizer

Extractive QA was developed to handle questions that are asked during the steps

of a task. Although we have Evi Question Answering API, it is not useful when

the answer should be found within a specific passage. For example, Extractive

QA module can be used when user asks how many/much a certain ingredient is

needed for a recipe given a recipe information. RoBERTa-Base model [72] pre-

trained on SQuAD dataset [73] is used and deployed as one of the remote service

on EC2.

Extractive Summarizer is used to prevent from providing users with lengthy

task description. Lengthy task information are usually retrieved in DIY task.

Once this description is outputted to the users without any summarization or

truncation, users tended to give low ratings after the conversation. Therefore,

within a response generator, we had extractive summarization model to first
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summarize the description before passing it to the response builder. Pre-trained

Distilled-BERT [74] model is used for faster computation.

4.5.3.2 Filter by dietary preference

To accommodate for users with dietary preferences, the dietary preferences fil-

ter was designed to allow users to exclude certain ingredients when searching for

recipes. For example, users can say, "add peanuts to my dietary preferences" to

filter out any recipes that list peanuts as an ingredient. This user-related infor-

mation can be saved in the user table.

In order to advertise this feature to users, the dietary preference feature was

added in the "Help" prompt. Whenever the bot fails to understand a user’s re-

quest, the bot informs the user that they can say "help" to hear additional op-

tions. If the user responds with "help", the system replies with instructions on

how to use the dietary preferences feature.

4.5.3.3 Fun Facts

Many TaskBots can feel rigid to interact with because of the cut-and-dry re-

sponses. To make the bot feel more human-like and interesting to interact

with, we manually scraped fun facts from cooking websites such as https:

//facts.net/cooking-facts/. All facts were manually scraped to pre-

vent any inappropriate facts from being added. The collection of fun facts were

stored in a key-value database with the food name as a key and fun fact as the

value. When a user asks for a recipe, the fun fact database is queried for the

user’s requested recipe and appends the relevant fact to the systems output. If

the user’s recipe is not found in the fun fact database, a general fun fact about

cooking is returned instead.

4.6 Dialogue Management

4.6.1 State Machine

Users can converse with an Alexa Prize Taskbot by saying, "assist me". They are

then routed to one of several taskbots in the competition. Condita users select a

https://facts.net/cooking-facts/
https://facts.net/cooking-facts/
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Figure 4.2: State machine like architecture of Condita’s DM. The user begins at the
Launch State. Steps with an asterisk (*) can only be reached if the user is
using a screen device.

task to work on by walking through the Task Selection Phase. Users start at the

Launch State and transition to the next states as described below:

• Launch: On start, the bot will check if whether the user is still working on

a task from a previous conversation. If they have a task in progress, the bot

will move to the Resume state. Otherwise, the bot will move to the Search

Task State.

• Resume: The bot will ask users if they would like to continue working on

their task. If the user responds yes, they will move to the Navigate Step state

and will continue working on the step they were last working on. If the user

responds no or asks for a new task, they will move to the Search Task state.

• Search Task: After the user requests for results for a certain task, the bot
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will call the WikiHow and Whole Foods Market APIs to search for and return

relevant results.

• Task Selection: Users can select tasks by either saying the title of the task,

uttering a phrase with an ordinal (e.g. the third one), or by touching the

corresponding image if they have a screen device. Additionally, the can say,

"show me more" to view additional tasks or "go back" to hear the previous

tasks again.

After selecting a task, the user enters the Instructions Phase. The Instruc-

tions Phase consists of the following states:

• Task Intro: Before starting the task, there is an introductory state where the

bot explains several key metrics of the task, such as user ratings, estimated

time of completion, ingredients needed, etc. Users can also choose to go

back to the task selection state if they wish to select another task.

• Video Intro (screen device only): Several WikiHow articles include videos

on how to perform the task. The bot will ask the user if they would like to

view the video if there is a video available. If the user responds yes, the bot

will then begin playing the video. If the user says no, the state then moves

to the Task Intro step. If there is no screen present, the bot will skip to the

navigate steps state.

• Video Step (screen device only): Using the APL Video Template, Condita

plays the video. Users can control the video either through touch input or

through voice. At the end of the video or at user request, the bot asks if

they would like to continue to the step by step instructions or if they are

finished with the task. The user will then be routed to the Task Intro state

and Congratulations step, respectively.

• Navigate Step: In the Navigate Step state, the bot instructs the user about

the current step of the task. Users can say "next" or "previous" to see the

next or previous state respectively.
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• Ingredient List: The Ingredient List state lists all of the ingredients in the

recipe. If the user has a screen device, the system will return a list view of

the ingredient list. Note that this step is only usable if the task is classified

as a cooking recipe.

• Tools List: The Tools List state lists all of the tools in the task. For example,

it may list the cooking utensils needed in a recipe or the equipment needed

for a DIY task. If the user has a screen device, the system will return a list

view of the tools list.

• Step List: The Step List state shows all of the steps in list view form if the

user has a screen device. Otherwise, it reads out every step in the task.

Once a user finishes a task, they move on to the Completion Phase. The

Completion Phase consists of the following two states:

• Congratulations: Once the user completes the final step, the user is con-

gratulated for finishing the task.

• Recommendations: After the user is congratulated for finishing the task,

the bot recommends two tasks that the user can do for next time. Due to

the rules of Alexa Prize, the user cannot start a new task after task comple-

tion. Thus, the bot informs the user that they can start a new conversation

with an Alexa Prize TaskBot and ask about this task.

Detected intents/slots, selected responders, and state changes are anno-

tated with the conversations in Appendix B.6. The example conversations were

generated by interacting with Condita.

4.6.2 Neural Response Selection

This section (4.6.2) contains the work co-developed with one of the team mem-

bers of the competition. To achieve a better performance in response selection,

ranking strategy has been developed based on a neural response ranker, BERT-FP
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[75]. BERT-FP focuses on a short conversation context and achieves the state-of-

the-art results in many datasets. We have fine-tuned this model with two datasets

and obtained reasonably good performance.

4.6.2.1 Dataset

Stack Exchange is a popular web-forum for general questions. Each question

has a thread of answers and comments. Here we take the question and the its

comments as the context and answers as the targets. Besides the targets, we

randomly pick the other two unrelated documents as the wrong answers. This

process was done both in cooking-related and DIY-related questions from stack-

exchange.com. 96,691 and 189,477 questions are collected for cooking and DIY,

respectively. For each target, we generated five wrong responses. These 286,168

cases were then divided into train, test, and validation set by 3:1:1 ratio.

Real user data is also used to fine-tune the model as the TaskBot has been

deployed. With the conversations between our bot and users, we generated a

number of cases in this dataset. We used the same ratio when splitting the dataset

for training.

4.6.2.2 Performance

Table4.1 shows that BERT-FP has a strong potential to handle the response rank-

ing task in cooking and DIY domain on production.

Dataset Stage MAP MRR P@1 R@1 R@2 R@5
Stack Exchange data test 0.9935 0.9935 0.9871 0.9017 1 1
Stack Exchange data validate 0.9766 0.9908 0.9846 0.4193 0.7042 0.9816

Real user data test 0.9767 0.9767 0.9534 0.9534 1 1
Real user data validate 0.9496 0.9688 0.9483 0.6336 0.9267 0.9784

Table 4.1: Performance of BERT-FP model on Stack Exchange data and the real user data.
Mean Average Precision, Mean Reciprocal Rank, Precision at one, and Recall
are denoted as MAP, MRR, P@1, and R@k, respectively.

4.7 Multimodal Customer Experience

This section (4.7) contains the work co-developed with one of the team members

of the competition. One of the main features of Condita is the multi-modal user
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experience for users with an Alexa screen device. Using the Alexa Presentation

Language (APL), we developed an easy-to-use interface to enhance the user ex-

perience. By showing information visually, we reduce the verbosity of prompts.

This resulted in higher user satisfaction and longer user engagement. Figure 4.3

shows a few examples of Condita’s visual responses.

Figure 4.3: UI for the Task Selection (left) and Navigate Step (right) states.

Due to the absence of a screen in headless mode, information that would

normally be shown visually must be communicated verbally. For example, a

recipe’s rating and estimated time of completion can easily be seen on the screen

device. However, users would not know this information if they are unable to

see it on the screen. To alleviate this issue, we added additional information in

the responses of headless prompts. For example, in the bot tells users the task’s

rating and estimated time of completion during the task intro state in headless

mode.

4.8 Deployment

Figure 4.4 shows the overall system deployment pipeline via multiple AWS ser-

vices, and how the Echo device communicates with the deployed service.

Developers prepare micro-services in the source code. Modules like Task

Classification, Ingredients/Tools Parser, Nounphrase Extraction, and Neural

Coreference are to be containerized using Docker images and hosted on Amazon

ECR (Elastic Container Registry), which provides a highly available and scalable

architecture. This is managed by the ECS (Elastic Container Service). Once devel-

opers push the source code via the Git version control service, AWS CodePipeline
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Figure 4.4: Condita depolyment process

is triggered for the CI/CD purpose. The CodePipeline 1) monitors the changes

of the source code 2) build Docker images from the source 3) pushes the images

to the ECR, and 4) updates the ECS with the new images via the CloudForma-

tion. The source code is also updated in the serverless compute service, Lambda,

which interacts with the ASK and ECS in an event-driven way.

4.9 Debugging

Debugging a software that runs on a cloud requires a reliable logging functional-

ity. We have used AWS CloudWatch for the logging service, as it lets developers

divide log groups for better debugging and set alarms for anomalous behaviors of

the system. Also, the CoBot [71] has its own CLI, cobot transcribe -t <state-table-

name> -s [session-id], that shows an annotated conversation given the session ID

of the conversation which facilitates debugging process (see Appendix B.4).
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4.10 Testing

Unit Testing. After each intent and slot are defined through the ASK console,

we could test the classification performance by the quick-test functionality as

can be seen in Appendix B.3. This allowed a single-turn NLU testing. In order

to unit test the containerized remote modules, Docker’s CLI was used to locally

build a docker image and run the container. Then, the remote modules can be

tested by sending a curl command to the local docker containers. This method

can be slow, but it keeps the dependencies isolated.

Integration Testing. By running the dialogue system in a local environment,

interactive chatting in the command line was possible. This way, multi-turn in-

tegration testing could be executed after the batch of unit testing (see Appendix

B.5).

Beta Testing. By the AWS CodePipeline, the deployed service will first stay

in the beta-level. After the internal beta testing, the beta version can be pushed

to the production-level once approved by one of the member of the team. Beta

testing can be done in two ways. First way is to use the ASK developer console.

In the console, the developer can check the input and output in JSON format in

each turn of the conversation. Also, by speaking into the microphone, developers

can also check the n-best ASR result in the JSON formatted log. Another way of

beta testing is to actually speak with the Alexa device. That way, we could test the

service in the same environment that users experience.

4.11 Online Evaluation

After every interaction session is ended, user could rate our dialogue system on a

scale from 1 to 5. A CSV file that contains user ratings for each session was daily

updated in our AWS S3 bucket by the Alexa Prize team. To actively utilize the

benefits of the online evaluation, we have introduced a feedback loop into the

continuous development pipeline. By using AWS Athena, an interactive query

service that uses S3 folders as its data source, we 1) fetched the conversation his-

tory from the State Table, 2) merged the fetched history with the user satisfaction
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score, and 3) saved the histories in a private repository sorted by the satisfaction

score for easy navigation. Moreover, this feedback loop was automated to update

everyday by the cron job provided by the GitHub Workflows. This let developers

quickly identify the part that users express their dissatisfaction, and fix in accor-

dance with their feedback. See Code List B.2 and B.3 for more details.

4.12 Summary

In this work, we have described the architecture design for Condita, a state-

machine inspired task-oriented dialogue system that assists users with cooking

or home improvement tasks. We presented how multi-turn dynamics of the TOD

is handled by our framework with domain knowledge integration. Moreover, we

discussed how the system is developed, tested, deployed, and evaluated robustly.

Our focus on improving the multi-modal customer interface and generating en-

gaging dialogue helped create an easy-to-use, memorable user experience to the

users.

Part of the source code can be found in the Appendix B.7. Note that the

whole source code of Condita cannot be submitted, distributed nor published as

it contains the properties of Alexa Prize. Only the subset of the code that do not

include Alexa Prize’s property and that are written by the author of this thesis are

listed in the Appendix.



Chapter 5

Proposing Future Research

5.1 Conversation Look-ahead by User Simulation

Section 2.3.2 has introduced the four big challenges in task-oriented dialogue

systems. However, the black box nature is endemic in most of the research that

involves neural networks, and this is the same in the dialogue systems research,

i.e., the problem of explainability and reasoning of actions.

We propose Conversation Look-ahead by User Simulation to mitigate the

problem. Although there has been some efforts to create a conversation look-

ahead in a few research [25, 76], as far as we know, there has been no attempt to

use the look-ahead for response ranking in Dialogue Manager.

User simulator that helps reasoning. After user’s utterance goes through

the NLU component of the dialogue system, Dialogue Manager (DM) pulls rele-

vant information from the NLU component, and generates one or more candi-

date responses. In Condita, we proposed the use of a neural response selection

model to select the best system response. However, this is a complete black box

model, thus does not provide a proper reasoning about the selection. Can we do

better? We can use the multi-task user simulator introduced in chapter 3.

To alleviate this problem, we can let the user simulator generate possible

user’s utterances for each candidate system response. Once the system has col-

lected all the generated user utterances, it can clone each state and generate

candidate responses for each of the generated user utterances. This will allow
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the bot to construct a future conversation tree (conversation look-ahead). Now,

the agent needs to have a strategy to select the best branch among the multiple

branches in the conversation tree. Here, we can use user satisfaction score (that

was given by the user simulator) to evaluate each branch and select the branch

that can give higher satisfaction to the user. Once we have obtained the satisfac-

tion score for each branch of the conversation tree, the agent can use Minimax

or Monte Carlo search algorithm to choose the most rewarding branch.

Points that can be criticized. Although user simulator can be used to mit-

igate the problems, it does not perfectly solves them. First, it can improve the

explainability, but the fact that the user simulator itself is also a large language

model prevents the solution from completely free from the black box characteris-

tic. However, it still improves a lot on the reasoning on an action, as constructing

a branches of future conversation tree is a great example of a What-if experiment.

Second, in production, creating more than a single turn of look-ahead might not

be feasible, as state cloning and searching is computationally heavy and time-

consuming. Although the Minimax algorithm can be substituted by Alpha-beta

pruning for cheaper computation, it is still open to question whether creating

more than a single look-ahead will improve the overall user satisfaction or not.

5.2 Personalized User Simulator

As it was shortly discussed in section 3.5, a user simulator based on a personal

knowledge is a possible direction of its improvement. Regarding how the user

simulator should be structured, a detailed explanation with a figure can be found

from a research suggestion paper written by Balog [4]. User Simulator should

mimic users. To do that, the architecture of the simulator can be similar to the

conversational agents, but has to have extra modules in order to give the follow-

ing ability: personal preference, persona, stochastic behaviour, ability to learn

the system, and form expectations. For the NLU module, unlike that of the dia-

logue system, it has to be adapted to consider personal knowledge, because users

act differently based on their background knowledge. By using personal knowl-
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edge graph in a User Model, we can refine the outcome of the original NLU model

within the user simulator.

5.3 Reinforcement Learning on Dialogue Manager

In chapter 4, Condita showed state machine like structure to track the dialogue

states and make actions. This can be seen as an RL problem. Condita’s states

have Markov property, i.e., state at time step t contains all the information neces-

sary for future predictions. Anything that happened prior to time t does not have

to be considered to predict future actions, as the current state captures all the

necessary information. Therefore, Condita’s dialogue manager can be viewed as

a Markov Decision Process (MDP) [59]. The multi-task user simulator can give

rewards to the system when the system choose an action value based on the

current state. Probability can be assigned for each action (transition function in

Condita), which is called policy learning. Policy is a mapping of π : S × A → [0,1],

where S is the set of states and A is set of actions. For every state s ∈ S, policy can

assign the probability of taking the action to each a ∈ A, i.e.,π(a|s) [59]. There will

be always one or more deterministic optimal policy for any MDP. In case there are

multiple optimal policy, we can either select random response based on stochas-

ticity or pass those multiple results to the neural response selector introduced in

section 4.6.2. This MDP problem can be solved by iterations of policy evaluation

and policy improvement, i.e., policy iteration (Dynamic Programming).



Chapter 6

Conclusions

In conclusion, we have alleviated all four challenges of task-oriented dialogue

system identified in section 2.3.2: 1) multi-turn dynamics, 2) domain knowledge

integration, 3) data efficiency, and 4) evaluation.

First, the novel multi-task neural user simulator has mitigated the data ef-

ficiency and evaluation problems. The multi-task learning has let the transfer

of prior and task-specific knowledge across the tasks. This allowed the model to

learn the data in the most efficient way. Once this simulator is used for evaluation

of dialogue systems, the current limitations of the offline evaluation (single-turn

or single path evaluation) can be overcome.

Second, the Condita has presented a solution for multi-turn dialogue track-

ing and domain knowledge integration. Its dialogue manager’s architecture mo-

tivated by the state-machine could track dialogue states with the help of multiple

transition functions. Based on the state and policy information set by the man-

ager, the system could make appropriate queries to the external knowledge base.
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Overall, the thesis has successfully achieved the following aims:

1. To provide an extensive survey of the related work to understand the liter-

ature and find a niche in research.

2. To implement a novel multi-task neural user simulator that can mimic

users’ utterance while predicting the users’ satisfaction score and action

at the same inference-time.

3. To provide a proof of the hypothesis that the muti-task learning of user sat-

isfaction prediction, action prediction, and utterance generation will give

positive transfers to each other.

4. To build a multi modal task-oriented dialogue system specialized in cook-

ing and home improvement task.

5. To rigorously test and deploy the service over the Alexa Platform.

6. To propose future research to tackle the remaining challenges in conversa-

tional artificial intelligence.
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Appendix A

Regarding User Simulator

A.1 Selected Examples of USS Dataset

Role Dialogue Action Satisfactions

USER
What is the weather like on the March 4th? INFORM 3,3,3

SYSTEM
In which city should I look? REQUEST

USER
The weather in Mill Valley. INFORM 4,3,3

SYSTEM
The weather should be around 90 degrees and there is a 7 percent chance of rain. OFFER

USER
How humid will the temperature be? REQUEST 3,3,3

SYSTEM
There is about a 18 percent humidity. INFORM

USER
Thank you for your help. THANK_YOU 4,4,4

SYSTEM
Can I help with anything else? REQ_MORE

USER
No, that is all. THANK_YOU 3,3,4

SYSTEM
Have a good day. GOODBYE

USER
OVERALL 4,3,4

Table A.1: Example of SGD from User Satisfaction Simulation (USS) dataset [1].

A.2 Source Code

Source code is publicly available at https://github.com/kimdanny/

user-simulation-t5 .

https://github.com/kimdanny/user-simulation-t5
https://github.com/kimdanny/user-simulation-t5


Appendix B

Regarding Condita

B.1 Condita System Requirements

1. When the skill is invoked, it must start with "Hi, this is an Alexa Prize

TaskBot".

2. The TaskBot must not give its name, university, city, or anything that might

potentially identify the TaskBot.

3. The TaskBot cannot offer advice or guidance for financial, legal, or medical

matters.

4. The TaskBot cannot use offensive words, speech, or make controversial or

inflammatory statements. It can state opinions but must do it in a mod-

erate fashion so that the bot does not alienate large segments of its cus-

tomers.

5. When a user says "stop", or other explicit indication that they wish to end

the conversation, the bot must end the conversation without returning any

further response.

6. Make the name of your skill "AlexaPrizeTaskBotChallenge1" (invocation

name can remain as it is), and use the attached images for the "Small Skill

Icon" and "Large Skill Icon". Each team will use the same image so that its

identity will not be revealed to customers.
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7. Do not ask for the user’s full name. The skill can ask for and use the user’s

first name, but it is a violation of privacy policies to have access to the user’s

full name. If the skill asks for the user’s name, explicitly ask for the first

name only.

8. Your skill must decline any task that can cause harm to users or their prop-

erty or requires a professional to be engaged and immediately stop the in-

teraction after any such request.

9. When the TaskBot reaches the end of the task instructions, it should ask the

user "Were you able to complete the task?", and then finish the conversa-

tion.

10. Send a transcript/summary card after the task execution begins (one time

only per task).

11. The TaskBot needs to be able to successfully handle at least 10% of the valid

cooking tasks, and 5% of the valid home improvement tasks that a user

may ask. Successfully handling a conversation includes: correctly identi-

fying the user’s task and the corresponding set of instructions; providing

instruction steps successfully; answering the user’s questions about the in-

structions; and providing of the conversation transcript to the user (Req

10). It is possible that the conversation does not reach the full task comple-

tion as confirmed by the user, but can still be considered successful.

12. Provide a required warning before giving instructions.

13. If a user mentions suicide (or other variants, such as I want to kill myself)

the TaskBot must respond with this standard response "It might not always

feel like it, but there are people who can help. Please know that you can call

the National Suicide Prevention Lifeline, twenty-four hours a day, seven

days a week. Their number is, 1-800-273-8255. Again, that’s 1-800-273-

8255."
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B.2 TaskBot Content Violation Keyword Examples

Danger

assassinate, atomic, attack, attacker, asbestos, backhoe, ballistic, blackmail,

boiler, bomb, build a deck, build a house, construct a wall, electrifying, en-

gine, expand room, explode, explosion, explosive, exterminate, knife, knock, lay

a floor, lay floor, lay flooring, lay tile, lead, lead-based, lethal, manslaughter

Legal

accuse, affidavit, appeal, arrest, arrested, attorney, bail, bankrupt, bankruptcy,

incarcerated, judicial, judiciary, juridical, jurisdiction, law, lawsuit, lawyer, leg-

islative, license, verdict, violate, violation, visa, warrant

Financial

binance, bitcoin, block chain, crypto, debit, debt, dogecoin, dollar, earning, eco-

nomic, economy, income, inflation, insurance, interest, invest, money, mort-

gage, mutual fund, negotiate, nonpayment of rent, overtime pay, rent increase,

revenue, robin hood, sale, saving, trade, trading, uniswap

Medical

arrhythmia, artery, arthritis, asthma, autism, bacteria, cirrhosis, colon, coma,

corona, coronavirus, cough, jaundice, know if you have, light headed, lipo-

suction, lung, lupus, lymphatic, malaria, medical, medication, ovarian, pain,

painkiller, pancreatitis, rubella salmonella, short of breath

Offensive and Unspported

f***, bullsh**, motherf***, cocaine, cigar, intercourse
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B.3 Alexa Skills Kit Console

Figure B.1: Intent Classification and Slot Filling done by ASK

Figure B.2: How Intent and Slots are defined in console, e.g., UserNameIntent
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B.4 CoBot’s transcribe CLI

Figure B.3: CoBot’s transcribe command line interface. Unique IDs are censored.

B.5 Integration Testing

Figure B.4: Integration testing in a terminal environment.



B.6. Example Conversations with Annotations 78

B.6 Example Conversations with Annotations

Utterance Intent Slot Response Generator Commentary

User: Alexa, open Condita
Condita: Hi, this is an Alexa Prize TaskBot.
I can help with cooking or home improvement.

How can I help? Invocation Launch
LAUNCH -> SEARCH_TASK

No previous
ongoing task is found

User: Alexa, open Condita
Condita: Last time we were working on chocolate cake.

Would you like to continue? Invocation Resume
LAUNCH -> RESUME

Previous ongoing task is found.
Transition to SEARCH_TASK afterwards if yes.

User: How do I cook pasta ?
Condita: Here’s what I found in Whole Foods Market for pasta.
The first is X, second is Y, and the last is Z.
The highest rated option is the last one
and the recipe with the shortest completion time is the first one.

Which option would you like? TaskRequestIntent RecipeTask Query

SEARCH_TASK -> TASK_SELECTION
Checks if the task is sensitive or not.

Can show more results upon request.
Interactive visual response.

User: How do I fix a leaky faucet in my bathtub?

Condita: Here’s what I found in WikiHow
for fixing a leaky faucet... TaskRequestIntent DIYTask Query SEARCH_TASK -> TASK_SELECTION
User: I do not want any options there.

Condita: Sorry about that. Any other task you want to ask? CancelIntent Cancel
TASK_SELECTION -> SEARCH_TASK

Go back to SEARCH_TASK if a task is not chosen yet.

User: I want the third option.
Condita: Good choice! I’ll tell you 8

ingredients you need. If you want to skip, say ‘next’. . . . SelectIntent ListPosition Task_selection
TASK_SELECTION -> TASK_INTRO

Introduction to tools and ingredients needed for the task.
Condita: I found a summary video related to the task.
Would you like to watch?
User: Yes, I want to watch the video

Condita: (Visual Response) YesIntent Video
TASK_INTRO -> VIDEO_INTRO

Only available to screen device users.
User: Pause the video

Condita: (Visual Response) Video

VIDEO_INTRO -> VIDEO_STEP
Pause, play, rewind, fast forward,

and starting over are available.
Transition to NAVIGATE state

if user agrees to continue after the video is ended.
User: Continue to the steps.
Condita: Step 1 out of 7.

Preheat the oven to 350 degrees Fahrenheit. NextIntent Show_steps
TASK_INTRO -> NAVIGATE

Next, start, continue, I’m ready, etc.
are available. Able to go back to the selection phase.

User: Go back to previous step.
Condita: Step 4 out of 7.

Drain well and transfer to a large heatproof bowl. PreviousIntent Show_steps
NAVIGATE -> NAVIGATE

Remind users with useful commands during the steps.
E.g. Ingredient list, help responder.

User: Let’s jump to step five .
Condita: Sure. Step 5 out of 7.
Gently stir in tomatoes, vegetables, and squash purèe. SkipIntent StepNumber Show_steps NAVIGATE -> NAVIGATE

User: What is squash purèe.
Condita: According to a recipe from Epicurious,
squash purèe is a dish commonly prepared
with calabaza or butternut squash, olive oil,

fresh lime juice, and nutmeg. FallbackIntent QA_responder
NAVIGATE -> NAVIGATE

Evi general QA responder and extractive QA is selected
and run in parallel, followed by a reselection from neural reranker.

User: Show me the list of ingredients again?
Condita: For this recipe you need 8 ingredients.
Please feel free to interrupt
while I say all the ingredients to you.
You need 1 pound of whole grain pasta, . . .

To continue your task, please say ‘continue’ FallbackIntent Ingredient_list

NAVIGATE -> INGREDIENTS_LIST
Tools list can be shown if tools exist,

especially for DIY tasks. Helpful visual aid can be provided
depending on the device type.
Can navigate through the list.

User: Help
Condita: Move the steps by ‘next’ and ‘previous’.
Also, skip to the specific step
by ‘skip to the third step’ for example. HelpIntent help Help responder can be activated at any states.

User: Add cheese into my shopping list
Condita: Sure, cheese is added to your shopping list ListManagementIntent item list_management Can add and remove items from the shopping list.
User: Set timer for 10 minutes
Condita: Timer is created for 10 minutes! TimerManagementIntent duration timer_management Can set, read, stop, resume, and cancel the timer.
User: Go next
Condita: Bravo! There are no more steps.
If you would like some follow up recommendations,
please say ‘recommendations’ Otherwise,

let’s complete this task! NextIntent congratulations

NAVIGATE -> CONGRATS
If user navigates to the next step but if it was the last step,

congratulate user for finishing the task
and ask if she wants follow up recommendations.

User: I want some recommendations
Condita: Definitely! After all the work you’ve done,
what do you think about fruit juice or apple pie?
User: Let’s go for a juice.
Condita: Nice choice! I’ll be more than happy

to assist you again. RecommendationIntent recommendations
CONGRATS -> RECOMMENDATIONS

End the conversation for a new session with the recommended task.

Table B.1: Conversations annotated with detected intent/slot, selected response gener-
ator, and state changes.
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B.7 Source Code

Listed source code is just to help reader’s understanding. Unnecessary syntac-

tic details were deleted, thus will fail to run. Please refer to Dr. Diego Martinez

Plasencia (MEng final year project coordinator) or Dr. Aldo Lipani (thesis super-

visor) if further information is needed about the source code.

Listing B.1: rule_based_selecting_strategy.py

class RuleBasedSelectingStrategy(SelectingStrategy):

"""

State machine based selecting strategy

"""

def __init__(self):

super(RuleBasedSelectingStrategy, self).__init__()

self.sensitive_questions_regex =

get_sensitive_questions_regex()

self.suicide_questions_regex = get_suicide_questions_regex

()

self.all_responders = {’HELP_RESPONDER’,

’QA_RESPONDER’,

’CANCELED_RESPONDER’,

’SENSITIVE_RESPONDER’,

’SHOW_STEPS_RESPONDER’,

’TASK_SELECTION_RESPONDER’,

’QUERY_RESPONDER’,

’DIETARY_PREFERENCES_RESPONDER’,

’TASK_COMPLETE_RESPONDER’,

’RESUME_RESPONDER’,

’FIRSTNAME_RESPONDER’,

’QUIT_RESPONDER’,

’LAUNCH_RESPONDER’,

’REPEAT_RESPONDER’,

’VIDEO_INTRO_RESPONDER’,

’INGREDIENT_LIST_RESPONDER’,

’TOOL_LIST_RESPONDER’,

’STEP_LIST_RESPONDER’,
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’CONGRATULATIONS_RESPONDER’,

’RECOMMENDATIONS_RESPONDER’,

’RECOMMENDATION_SELECTION_RESPONDER

’,

}

self.transitions = {

State.LAUNCH: [

(lambda i: not self.is_there_a_previous_task(),

’LAUNCH_RESPONDER’),

(lambda i: self.is_resuming() and self.

is_there_a_previous_task(),

’SHOW_STEPS_RESPONDER’),

(lambda i: i in {’AMAZON.NoIntent’},

’LAUNCH_RESPONDER’),

(lambda i: self.is_there_a_previous_task(),

’RESUME_RESPONDER’)

],

State.RESUME: [

(lambda i: i in {’AMAZON.NoIntent’},

’LAUNCH_RESPONDER’,

lambda: [UserAttributesSetter.

wipe_task_information(self, ’LAUNCH_RESPONDER’

),

ResponsePrompt.acknowledgement()][1]),

(lambda i: ’resume’ in self.state_manager.

current_state.text or

i in {’AMAZON.YesIntent’, ’AMAZON.

ResumeIntent’},

’SHOW_STEPS_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: i in {’TaskRequestIntent’} and (

is_dangerous(self.state_manager.

current_state) or self.

is_sensitive_utterance()),

’SENSITIVE_RESPONDER’),
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(lambda i: i in {’TaskRequestIntent’} and not (

is_dangerous(self.state_manager.

current_state) or self.

is_sensitive_utterance()),

’QUERY_RESPONDER’,

lambda: [UserAttributesSetter.

wipe_task_information(self, ’QUERY_RESPONDER’)

,

ResponsePrompt.empty_response()][1]),

],

State.NEW_TASK: [

(lambda i: i in {’AMAZON.YesIntent’} or any(

task in self.state_manager.current_state.text

for task in [’home improvement’, ’cooking’

]),

’LAUNCH_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: i in {’AMAZON.NoIntent’},

’QUIT_RESPONDER’),

(lambda i: i in {’TaskRequestIntent’} and (

is_dangerous(self.state_manager.

current_state) or self.

is_sensitive_utterance()),

’SENSITIVE_RESPONDER’),

(lambda i: i in {’TaskRequestIntent’,

’AMAZON.FallbackIntent’} and self

.is_a_new_task(),

’QUERY_RESPONDER’),

(lambda i: i in {’AMAZON.SelectIntent’,

’SelectIntent’,

’UserEvent’,

’TaskRequestIntent’,

’AMAZON.FallbackIntent’},

’TASK_SELECTION_RESPONDER’,

ResponsePrompt.acknowledgement),

],
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State.TASK_SELECTION: [

(lambda i: i in {’AMAZON.PreviousIntent’} or any(

task in self.state_manager.current_state.text

for

task in [’show me more’, ’tell me more’, ’give

me more’]), ’QUERY_RESPONDER’),

(lambda i: i in {’TaskRequestIntent’,

’AMAZON.FallbackIntent’} and self

.is_a_new_task(),

’QUERY_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: i in {’AMAZON.SelectIntent’,

’SelectIntent’,

’TaskRequestIntent’,

’UserEvent’,

’AMAZON.FallbackIntent’,

’AMAZON.ResumeIntent’},

’TASK_SELECTION_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: i in {’AMAZON.CancelIntent’},

’CANCELED_RESPONDER’,

ResponsePrompt.acknowledgement)

],

State.TASK_INTRO: [

(lambda i: self.is_video_available() and (i in {’

AMAZON.NextIntent’} or any(

task in self.state_manager.current_state.text

for task in [’start’, ’continue’, ’next’, ’

ready’])),

’VIDEO_INTRO_RESPONDER’),

(lambda i: not self.is_video_available() and (i in

{’AMAZON.NextIntent’} or any(

task in self.state_manager.current_state.text

for task in [’start’, ’continue’, ’next’, ’

ready’])),

’SHOW_STEPS_RESPONDER’),
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(lambda i: i in {’AMAZON.PreviousIntent’}, ’

QUERY_RESPONDER’),

(lambda i: i in {’AMAZON.CancelIntent’},

’CANCELED_RESPONDER’,

ResponsePrompt.acknowledgement)

],

State.VIDEO_INTRO: [

(lambda i: i in {’AMAZON.YesIntent’}, ’

VIDEO_RESPONDER’),

(lambda i: i in {’AMAZON.NoIntent’}, ’

SHOW_STEPS_RESPONDER’),

],

State.VIDEO_STEP: [

(lambda _: any(

task in self.state_manager.current_state.text

for

task in [’pause’, ’play’, ’rewind’, ’fast

forward’, ’start over’]), ’VIDEO_RESPONDER’

),

(lambda i: i in [’UserEvent’] and self.

state_manager.current_state.user_event.get(’

source’) and

self.state_manager.current_state.

user_event.get(

’source’).get(’type’) == "Video"

and self.state_manager.current_state.

user_event.get(’arguments’) and

self.state_manager.current_state.

user_event.get(’arguments’)[0] == "

videoPlayerEnded",

’VIDEO_RESPONDER’),

(lambda _: any(

task in self.state_manager.current_state.text

for task in [’continue’]), ’

SHOW_STEPS_RESPONDER’),

(lambda _: any(
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task in self.state_manager.current_state.text

for task in [’done’]), ’

CONGRATULATIONS_RESPONDER’),

(lambda i: i in {’AMAZON.CancelIntent’},

’CANCELED_RESPONDER’,

ResponsePrompt.acknowledgement)

],

State.NAVIGATE_STEP: [

(lambda i: i in {’AMAZON.NextIntent’} and self.

is_last_step(),

’CONGRATULATIONS_RESPONDER’),

(lambda i: i in {’AMAZON.NextIntent’, ’AMAZON.

PreviousIntent’,

’SkipIntent’} and not self.

is_last_step(),

’SHOW_STEPS_RESPONDER’),

(lambda i: i in {’AMAZON.PreviousIntent’, ’

SkipIntent’} and self.is_last_step(),

’SHOW_STEPS_RESPONDER’),

(lambda i: ’resume’ in self.state_manager.

current_state.text or i in {’AMAZON.

ResumeIntent’},

’SHOW_STEPS_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: i in {’AMAZON.CancelIntent’},

’CANCELED_RESPONDER’,

ResponsePrompt.acknowledgement)

],

State.INGREDIENT_LIST: [

(lambda i: ’resume’ in self.state_manager.

current_state.text or i in {’AMAZON.

ResumeIntent’},

self.pop_previous_responder(State.INGREDIENT_LIST

, allowed_responders={

’TASK_SELECTION_RESPONDER’,

’SHOW_STEPS_RESPONDER’,
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’QUERY_RESPONDER’,

’VIDEO_INTRO_RESPONDER’}),

ResponsePrompt.acknowledgement)

],

State.TOOL_LIST: [

(lambda i: ’resume’ in self.state_manager.

current_state.text or i in {’AMAZON.

ResumeIntent’},

self.pop_previous_responder(State.TOOL_LIST,

allowed_responders={

’TASK_SELECTION_RESPONDER’,

’SHOW_STEPS_RESPONDER’,

’QUERY_RESPONDER’,

’VIDEO_INTRO_RESPONDER’}),

ResponsePrompt.acknowledgement)

],

State.STEP_LIST: [

(lambda i: ’resume’ in self.state_manager.

current_state.text or i in {’AMAZON.

ResumeIntent’},

self.pop_previous_responder(State.STEP_LIST,

allowed_responders={

’TASK_SELECTION_RESPONDER’,

’SHOW_STEPS_RESPONDER’,

’QUERY_RESPONDER’,

’VIDEO_INTRO_RESPONDER’}),

ResponsePrompt.acknowledgement)

],

State.CONGRATULATIONS: [

(lambda i: any(text in self.state_manager.

current_state.text for text in [’complete’, ’

finish’]),

’TASK_COMPLETE_RESPONDER’,

lambda: [UserAttributesSetter.

wipe_task_information(self), ResponsePrompt.

acknowledgement()][1]),
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(lambda i: i in {’AMAZON.PreviousIntent’, ’

SkipIntent’},

’SHOW_STEPS_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: ’recommendation’ in self.state_manager.

current_state.text or i in {’

RecommendationIntent’},

’RECOMMENDATIONS_RESPONDER’,

ResponsePrompt.acknowledgement)

],

State.RECOMMENDATIONS: [

(lambda i: i in {’AMAZON.SelectIntent’,

’SelectIntent’,

’TaskRequestIntent’,

’UserEvent’,

’AMAZON.FallbackIntent’},

’RECOMMENDATION_SELECTION_RESPONDER’,

lambda: [UserAttributesSetter.

wipe_task_information(self), ResponsePrompt.

acknowledgement()][1]),

(lambda i: any(text in self.state_manager.

current_state.text for text in [’complete’, ’

finish’]),

’TASK_COMPLETE_RESPONDER’,

lambda: [UserAttributesSetter.

wipe_task_information(self), ResponsePrompt.

acknowledgement()][1]),

(lambda i: i in {’AMAZON.CancelIntent’},

’CONGRATULATIONS_RESPONDER’,

ResponsePrompt.acknowledgement)

]

}

for state in self.transitions:

# high priority, these are selected before any state

in the state machine
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self.transitions[state] = \

[

(lambda i: i in {’AMAZON.HelpIntent’},

’HELP_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: i in {’AMAZON.RepeatIntent’},

’REPEAT_RESPONDER’,

ResponsePrompt.acknowledgement),

(lambda i: any(

chunk in self.state_manager.current_state.

text for

chunk in [’list of ingredients’,

’ingredient list’,

’ingredients list’,

’ingredients’]) and self.

is_there_a_previous_task(),

’INGREDIENT_LIST_RESPONDER’),

(lambda i: any(

chunk in self.state_manager.current_state.

text for

chunk in [’list of tools’,

’tool list’,

’tools list’,

’tools’]) and self.

is_there_a_previous_task(),

’TOOL_LIST_RESPONDER’),

(lambda i: any(

chunk in self.state_manager.current_state.

text for

chunk in [’list of steps’,

’step list’,

’steps list’,

’steps’]) and self.

is_there_a_previous_task(),

’STEP_LIST_RESPONDER’),

(lambda i: i in {’ConversionIntent’},
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’QA_RESPONDER’)

] + self.transitions[state]

# low priority, these are selected after

self.transitions[state].extend([

(lambda i: i in {’UserNameIntent’},

’FIRSTNAME_RESPONDER’),

(lambda i: i in {’ListManagementIntent’},

’LIST_MANAGEMENT_RESPONDER’),

(lambda i: i in {’DietaryPreferencesIntent’},

’DIETARY_PREFERENCES_RESPONDER’),

(lambda i: i in {’TimerManagementIntent’},

’TIMER_MANAGEMENT_RESPONDER’),

(lambda i: not is_dangerous(self.state_manager.

current_state) and i in {’AMAZON.FallbackIntent

’},

’QA_RESPONDER’),

(lambda i: is_dangerous(self.state_manager.

current_state) and i in {’AMAZON.FallbackIntent

’},

’SENSITIVE_RESPONDER’),

(lambda i: self.is_sensitive_utterance() and i not

in {’AMAZON.NoIntent’, ’AMAZON.YesIntent’},

’SENSITIVE_RESPONDER’),

])

for state in State:

if state not in self.transitions:

self.transitions[state] = [

(lambda i: True, ’PASS_RESPONDER’),

]

# verify that the tasks are the right version, otherwise

delete them

ListTask.verify_saved_tasks(self)
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# sanitize

for state in self.transitions:

for j, transition in enumerate(self.transitions[state

]):

if len(transition) == 2:

self.transitions[state][j] = (

transition[0], transition[1], None)

def get_state(self):

intent = self.state_manager.current_state.intent

if intent == ’LaunchRequestIntent’: # reset to first

state when the conversation starts

setattr(self.state_manager.user_attributes, ’state’,

State.LAUNCH.name)

state = State.LAUNCH.name

else:

state = getattr(self.state_manager.user_attributes, ’

state’, State.LAUNCH.name)

state = State[state] if state else State.LAUNCH

return state

def select_response_mode(self, features):

intent = self.state_manager.current_state.intent

user_attributes = self.state_manager.user_attributes

state = self.get_state()

# this print is shown in the terminal

print(’intent:’, intent, ’\nstate:’, state.name, ’\

nuser_attributes:’,

[item for item in user_attributes.map_attributes.

keys() if getattr(user_attributes, item, None)])

available_responders = []

for condition, responder, message in self.transitions[

state]:
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if condition(intent):

if responder == ’SENSITIVE_RESPONDER’:

available_responders = [(responder, message)]

+ available_responders

else:

available_responders.append((responder,

message))

if message:

DecoratedResponseGenerator.set_decorator(

responder, user_attributes, message())

if not available_responders:

available_responders.append((’QA_RESPONDER’, ’’))

selected_responders = [r for r, _ in available_responders]

print(’selected_responders:’, selected_responders)

# this returns first the selected responder, then all the

others

setattr(user_attributes, ’selected_responder’,

selected_responders[0])

if selected_responders[0] in {’LIST_MANAGEMENT_RESPONDER’,

’TIMER_MANAGEMENT_RESPONDER’, ’VIDEO_RESPONDER’}:

return [selected_responders[0]]

else:

return self.all_responders.union(set(

selected_responders))

Listing B.2: transcript_dump.py

ratings_base_dir = ’./feedback-files/ratings/’

conv_feedback_base_dir = ’./feedback-files/conversation_feedbacks/

’

account_id = ’ANONYMIZED’ # anonymized

def fetch_ratings(ratings_base_dir):
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command = f’aws s3 cp s3://ANONYMIZED/{account_id}/Ratings/

ratings.csv {ratings_base_dir}’

_ = subprocess.run(command.split(’ ’))

def fetch_conv_feedbacks(conv_feedback_base_dir):

command = f’aws s3 cp s3://ANONYMIZED/{account_id}/

conversation_feedback.csv {conv_feedback_base_dir}’

_ = subprocess.run(command.split(’ ’))

def convert_time_to_filename(time):

time = time.replace(’-’, ’’)

time = time.replace(’:’, ’’)

time = time.replace(’ ’, ’-’)

return time

def get_index_from_checkpoint() -> int:

index = None

with open(’./ratings_date_checkpoint.txt’, ’r’) as f:

line = f.readline()

if line==’’:

return -1

index = int(line.split(’|’)[0])

f.close()

return index

def save_date_checkpoint():

last_index = len(ratings)-1

last_row = ratings.iloc[last_index]

with open(’./ratings_date_checkpoint.txt’, ’w’) as f:

f.write(str(last_index))

f.write(’|’) # this bar will be the delimeter when we

read from the file

f.write(last_row[’Conversation ID’])

f.write(’|’)

f.write(last_row[’Approximate Start Time’])

f.close()
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## Main ##

if __name__ == ’__main__’:

# fetch all the updated files from aws s3

fetch_ratings(ratings_base_dir)

fetch_conv_feedbacks(conv_feedback_base_dir)

ratings = pd.read_csv(f’{ratings_base_dir}ratings.csv’)

# read checkpoint

checkpoint_index = get_index_from_checkpoint()

if checkpoint_index == -1:

print("couldn’t fine checkpoint")

df = ratings.copy()

else:

print(f"start reading from index {checkpoint_index+1}")

df = ratings[checkpoint_index+1:]

if len(df)==0:

print("No more logs to save")

else:

print(f"{len(df)} more logs to save")

# saving conversation logs in text files by ratings

for i, row in df.iterrows():

conv_id = row[’Conversation ID’]

start_time = row[’Approximate Start Time’]

rating = str(int(row[’Rating’]))

duration = row[’ConversationDurationInSeconds’]

transcription_command = f’cobot transcribe -t

StateTable -c {conv_id}’

with open("./temp.txt", "w") as f:

subprocess.run(transcription_command.split(’ ’),

stdout=f)
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save_dir = f’./rating-{rating}/’

saving_filename = f’{convert_time_to_filename(

start_time)}.txt’

with open(’./temp.txt’, ’r’) as f:

with open(f’{save_dir}{saving_filename}’, ’w’) as

f2:

for line in f:

f2.write(re.sub(’[[0-9]+m’, ’’, line))

save_date_checkpoint()

print("Finished")

Listing B.3: athena_to_s3.py

os.system(’python3 transcript_dump.py’)

athena_client = boto3.client(’athena’)

s3_client = boto3.client(’s3’)

db_name = ’default’

query = ’’’SELECT "session_id", "conversation_id", "

creation_date_time", "text", "candidate_responses", "response"

FROM state_table

ORDER BY creation_date_time DESC’’’

s3_output_bucket_name = ’athena-streamline-test’

s3_output_folder_name = ’state-table-dump’

s3_output_location = ’s3://athena-streamline-test/state-table-dump

/’

ratings_file_location = ’./feedback-files/ratings/ratings.csv’

def athena_to_s3():

response = athena_client.start_query_execution(
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QueryString = query,

QueryExecutionContext = {

’Database’: db_name

},

ResultConfiguration = { ’OutputLocation’:

s3_output_location}

)

return response

def s3_object_to_pd(query_exec_id: str) -> pd.DataFrame:

obj = s3_client.get_object(Bucket=s3_output_bucket_name, Key=f

’{s3_output_folder_name}/{query_exec_id}.csv’)

df = pd.read_csv(io.BytesIO(obj[’Body’].read()))

return df

def ratings_to_pd() -> pd.DataFrame:

return pd.read_csv(ratings_file_location)

# Requires heavy RAM usage.

# dump csv in local and upload it to S3 without using buffer

def df_to_s3(df: pd.DataFrame):

with io.StringIO() as csv_buffer:

df.to_csv(csv_buffer, index=False)

response = s3_client.put_object(

Bucket=s3_output_bucket_name, Key="

conv_log_with_ratings/conv_log_with_ratings.csv",

Body=csv_buffer.getvalue()

)

status = response.get("ResponseMetadata", {}).get("

HTTPStatusCode")

if status == 200:

print("Succesfully uploaded the CSV file to S3")

else:
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raise Exception("Problem with uploading dataframe to

S3")

def check_if_exist_in_s3(bucket_name, prefix) -> int:

s3_session = boto3.Session().resource(’s3’)

my_bucket = s3_session.Bucket(bucket_name)

ls = list(my_bucket.objects.filter(Prefix=prefix))

return len(ls)

def clean_s3_folder(bucket_name, prefix):

s3_session = boto3.Session().resource(’s3’)

my_bucket = s3_session.Bucket(bucket_name)

for item in my_bucket.objects.filter(Prefix=prefix):

item.delete()

## Main ##

if __name__ == ’__main__’:

# clean Athena’s s3_output_location

clean_s3_folder(bucket_name=s3_output_bucket_name, prefix=

s3_output_folder_name)

# query athena and save conv csv to S3

res = athena_to_s3()

athena_query_execution_id = res[’QueryExecutionId’]

athena_https_response = res[’ResponseMetadata’][’

HTTPStatusCode’]

assert athena_https_response == 200

print(f"Query ({athena_query_execution_id}) saved to S3")

# wait for the file to be saved in S3

sleep(5)

# get conv df from s3

try:

conv_df = s3_object_to_pd(query_exec_id=

athena_query_execution_id)
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print("got conversation dataframe")

except:

# wait for a few more seconds

before_while = time()

while not check_if_exist_in_s3(s3_output_bucket_name,

prefix=f’{s3_output_folder_name}/{

athena_query_execution_id}.csv’):

if time() - before_while > 5:

print(’Timeout: Cannot find queried result from S3

’)

exit(1)

# get ratings df

ratings_df = ratings_to_pd()

ratings_df = ratings_df.rename(columns={’Conversation ID’: ’

conversation_id’})

assert ’conversation_id’ in ratings_df.columns and ’

conversation_id’ in conv_df.columns

# merge the two

merged_df = conv_df.merge(ratings_df, how=’left’, on=’

conversation_id’)

print("Merge completed")

# clean /conv_log_with_ratings/

clean_s3_folder(bucket_name=s3_output_bucket_name, prefix=’

conv_log_with_ratings’)

# upload to S3

print("Uploading merged csv file to S3 ...")

df_to_s3(merged_df)

print("Uploaded")


	Introduction
	Literature Review
	User Simulation
	Task-oriented Dialogue Systems

	Literature Review
	Language Modeling
	Frequency-based Language Models
	Neural Network-based Language Models
	Transformer-based Language Models
	Evaluation Metrics
	Multi-Task Learning in NLP

	User Simulation in Dialogue Systems
	Uses Cases of User Simulators
	Architecture of the Simulator
	User Satisfaction Modeling

	Task-oriented Dialogue Systems
	Modules and Approaches
	Current Challenges in TOD


	Multi-Task User Simulator
	Introduction
	Multi-Task Learning
	SatAct
	SatActUtt
	Utt

	Experiments
	Dataset Preparation
	Training Details
	Evaluation Measures

	Results
	Discussions
	Summary

	Task-oriented Dialogue System
	Introduction
	System Requirements
	System Architecture
	Natural Language Processing
	Initial NLP Modules
	Intent Classification and Slot Filling
	Task Classification
	ASR Error correction
	Avoiding dangerous and sensitive conversation

	Response Generations
	Stateful Responders
	Stateless responders
	Sub-modules for Response Generators

	Dialogue Management
	State Machine
	Neural Response Selection

	Multimodal Customer Experience
	Deployment
	Debugging
	Testing
	Online Evaluation
	Summary

	Proposing Future Research
	Conversation Look-ahead by User Simulation
	Personalized User Simulator
	Reinforcement Learning on Dialogue Manager

	Conclusions
	Bibliography
	Appendices
	Regarding User Simulator
	Selected Examples of USS Dataset
	Source Code

	Regarding Condita
	Condita System Requirements
	TaskBot Content Violation Keyword Examples
	Alexa Skills Kit Console
	CoBot's transcribe CLI
	Integration Testing
	Example Conversations with Annotations
	Source Code


